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Abstract

Humans and animals both use acoustic signals for vocal communication. The advent of
self-supervised learning (SSL) has enabled neural networks to learn robust and general feature
representations through the intrinsic acoustic structure of input signals, without prior knowl-
edge or supervision. Given that both human speech and animal vocalizations are inherently
structured signals that encode information, this thesis investigates whether representations
learnt from human speech are transferable for decoding non-human animal vocalizations.

We first formulate and validate our core hypothesis through a proof-of-concept caller detection
study on marmoset vocalizations, where multiple pre-trained SSL models are benchmarked.
Building on this, we further evaluate their transferability across multiple marmoset datasets,
and demonstrate that early layer representations from SSL models such as WavLM outperform
traditional handcrafted features for call-type and caller identity classification.

We then explore how differences in auditory bandwidth between humans and animals in-
fluence the transferability of such SSL features. We show that bandwidth mismatches can
have an impact on performance, and increasing its size yields a monotonic improvement for
call-type and caller classification. We also compare SSL models pre-trained on speech with
those pre-trained on general audio or directly on animal vocalizations. Our experiments reveal
that general-purpose audio pre-training yields comparable performance to human speech
pre-training, and the bioacoustics-trained models marginally improve it on specific datasets.

To further improve classification scores, we investigate model adaptation of the pre-trained
SSL models. Fine-tuning such speech models on an automatic speech recognition task in a
supervised framework does not bring any consistent improvements in performance, and in
some cases, actually leads to a performance decline in the later layers. However, parameter-
efficient fine-tuning strategies, such as Low-Rank Adaptation (LoRA), combined with selective
layer freezing and pruning, achieves significant gains over standard linear probing in specific
scenarios, while also reducing training complexity. Our results underscore the importance of
LoRA adapter placements, layer selections, and fine-tuning strategies.

Finally, we attempt to leverage the sequential nature of animal vocalizations. While previous
experiments temporally averaged extracted features into single vector representations, we
use vector quantization frameworks to discretize frame-level SSL features into acoustic token
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Abstract

sequences. We evaluate these sequences through Levenshtein-distance analysis and sequence
classification, and find that while they preserve some degree of acoustic discriminability,
their performance remains well below that of a simple linear classifier applied to averaged
functional vectors.

On the whole, this thesis demonstrates that SSL representations learnt from human speech
can generalize effectively to animal vocalizations. Our work provides a practical and robust
groundwork for computational bioacoustics, as well as a foundation for further bridging
machine learning with animal communication science.

Keywords: bioacoustics, animal vocalizations, self-supervised learning, speech and audio fea-
ture representations, transfer learning, low-rank adaptation, vector quantization, bandwidth,
call-type and caller classification, machine learning.
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Résumé

Les humains et les animaux utilisent tous deux des signaux acoustiques pour communiquer
vocalement. Lavénement de 'apprentissage auto-supervisé (AAS) a permis aux réseaux neu-
ronaux d’apprendre des représentations de caractéristiques robustes et générales a partir
de la structure acoustique intrinseque des signaux d’entrée, sans connaissance préalable ni
supervision. Etant donné que la parole humaine et les vocalisations animales sont toutes deux
des signaux structurés qui véhiculent de I'information, cette thése étudie si les représentations
apprises a partir de la parole humaine peuvent étre transférées pour décoder les vocalisations
animales non-humaines.

Nous formulons et validons d’abord notre hypothése principale a travers une étude de dé-
tection de I'appelant sur les vocalisations de ouistitis, en utilisant plusieurs modeles AAS
pré-entrainés. En nous appuyant sur cette premiere analyse, nous évaluons ensuite leur trans-
férabilité sur plusieurs ensembles de données de ouistitis, et montrons que les représentations
des couches inférieures de modéles tels que WavLM surpassent les caractéristiques tradition-
nelles concues manuellement pour les taches de classification du type d’appel et de I'identité
de I'appelant.

Nous explorons ensuite comment les différences de bande passante auditive entre humains
et animaux influencent la transférabilité de ces représentations AAS. Nous montrons que
les incompatibilités de bande passante peuvent affecter la performance, et qu'une bande
passante plus large entraine une amélioration monotone pour la classification du type d’appel
et de 'appelant. Nous comparons également des modeles AAS pré-entrainés sur la parole
humaine a ceux entrainés sur de 'audio général ou directement sur des vocalisations animales.
Nos expériences montrent que les modeles pré-entrainés sur de 'audio général atteignent des
performances comparables a ceux pré-entrainés sur la parole humaine, et que les modeles
entrainés sur des données bioacoustiques peuvent légerement les surpasser sur certaines
bases de données.

Pour améliorer davantage les scores de classification, nous étudions I'adaptation des modéles
AAS pré-entrainés. L'adaptation supervisée de modeles pré-entrainés sur la parole a une tache
de reconnaissance automatique de la parole n’apporte pas d’amélioration systématique des
performances, et peut méme entrainer une baisse dans les couches neuronales supérieures.
En revanche, des stratégies d’adaptation efficaces en parameétres, telles que I’adaptation a



Résumé

faible rang, combinées a un gel et une sélection partielle des couches neuronales, permettent
d’obtenir des gains significatifs par rapport a un simple classificateur linéaire dans certains scé-
narios, tout en réduisant la complexité d’entrainement. Nos résultats soulignent 'importance
du placement des adaptateurs, du choix des couches, et des stratégies d’adaptation.

Enfin, nous tentons de tirer parti de la nature séquentielle des vocalisations animales. Alors
que les expériences précédentes moyennaient temporellement les caractéristiques extraites
en un seul vecteur fonctionnel, nous utilisons des méthodes de quantification vectorielle
pour discrétiser les représentations AAS en séquences de jetons acoustiques. Nous évaluons
ces séquences a 'aide de I'analyse par distance de Levenshtein et de la classification de
séquences, et constatons que, bien qu’elles conservent une certaine capacité de discrimination
acoustique, leurs performances restent inférieures a celles d'un simple classifieur linéaire
appliqué a des vecteurs moyens.

Dans I'ensemble, cette these montre que les représentations AAS apprises a partir de la parole
humaine peuvent se généraliser efficacement aux vocalisations animales. Notre travail propose
un cadre pratique et solide pour la bioacoustique computationnelle, et jette les bases d'un
rapprochement entre apprentissage automatique et science de la communication animale.

Mots-clés : bioacoustique, vocalisations animales, apprentissage auto-supervisé, représen-
tations de caractéristiques de la parole et de I’audio, apprentissage par transfert, adaptation
a faible rang, quantification vectorielle, bande passante, classification du type d’appel et de
I'appelant, apprentissage automatique.
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|§ Introduction

Bioacoustics is the study of animal sounds, specifically the production, transmission, and
reception of acoustic signals in animals and their environments, and is often studied to under-
stand the mechanisms underlying animal vocal communication (Bradbury and Vehrencamp,
1998). Animal vocalizations are of particular interest as they encode a range of critical informa-
tion, spanning from individual and social behavior (Hauser, 1996; D. T. Blumstein et al., 2011)
to species interactions, habitat health, and ecological dynamics. In addition, understanding
bioacoustic signals can provide key insights into the foundational principles shared by hu-
man and animal communication systems (R. M. Seyfarth and D. L. Cheney, 2010; Fedurek,
Slocombe, and Zuberbiihler, 2016). Bioacoustics is thus also used to study the origins and
evolution of language and vocal learning (Hurford, 2012; Fitch, 2018), as a means to deepen
our understanding of communication in the non-human natural world.

Human vocal communication has been extensively studied and has progressed through suc-
cessive stages of methodological innovation and refinement. Early speech processing systems
relied on explicit models of speech production, most notably the source—filter model (Fant,
1970), as well as signal-processing theory. These foundations gave rise to methods such as
linear predictive coding (Atal and Hanauer, 1971) and carefully engineered spectral features
like Mel-frequency cepstral coefficients (MFCCs) (Davis and Mermelstein, 1980). However, the
advent of artificial intelligence and deep learning (LeCun, Bengio, and Hinton, 2015; Schmid-
huber, 2015) demonstrated that many of these hand-designed priors are no longer essential:
rich, task-relevant representations can be learned directly from raw audio with just supervision
and minimal domain knowledge (Hinton et al., 2012; Dahl et al., 2012; Graves, A.-r. Mohamed,
and Hinton, 2013). More recently, self-supervised learning (SSL) has enabled models to learn
robust, generalizable representations from the geometry of unlabeled speech data (Oord, Y. Li,
and Vinyals, 2018), eliminating the need for direct supervision and annotated corpora. When
combined with the availability of large-scale data, high-performance computing clusters, and
novel transformed-based architectures (Vaswani et al., 2017), technologies such as automatic
speech recognition (Baevski et al., 2020; W.-N. Hsu et al., 2021; Radford et al., 2023), speaker
identification (Snyder et al., 2018b; Desplanques, Thienpondt, and Demuynck, 2020; Bai and
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X.-L. Zhang, 2021), and text-to-speech synthesis (van den Oord et al., 2016; Shen et al., 2018)
have progressed to unprecedented levels of performance.

By contrast, the study of non-human vocal communication, though rich in potential insights,
still remains relatively underdeveloped, with comparatively little prior knowledge to guide re-
search. Computational bioacoustics aims to ‘decode’ animal vocalizations to gain insights into
their communication. In practice, this means automatically deriving information from animal
signals through detection and classification tasks, such as vocalization detection, call-type clas-
sification, caller identification, sex classification. Early studies often relied on labour-intensive
manual data annotation, and predominantly used spectograms as input representation from
which further statistical features, such as peak frequencies, sound event durations, and more,
were derived. Such studies typically only addressed small, species-specific datasets with a
limited number of subjects, constraining the generalization and scalability across taxa and
recording conditions. More general investigations often focused on broad tasks which are
relatively easy, such as species classification, solvable using traditional machine learning
classifiers. Moreover, a strong proportion of these studies were also exclusively focused on
avian bioacoustics (Kahl et al., 2021; Ghani et al., 2023). Recent application of deep learning
networks to bioacoustics has shown promise, enabling researchers to learn salient representa-
tions to analyze animal vocalizations at a larger scale (Stowell et al., 2019; Sainburg, Thielk, and
Gentner, 2020). Notably, re-purposing deep learning architectures originally developed for
human speech tasks for bioacoustics has shown some success (Y.-J. Zhang et al., 2018; E. Coffey
etal., 2019; Bergler et al., 2019), suggesting potential domain transferability. Nonetheless, this
deep learning approach remains a species-specific approach, and requires model training
from scratch with supervision on large labeled datasets, which are still rare in bioacoustics.

Humans and animals both possess production and perception systems that allow them to
communicate vocally through acoustic signals (Prather, 2013). In humans, speech is generated
through a vocal production mechanism involving an excitation source, namely the vibration
of the vocal folds, and the vocal tract system (Jurafsky and Martin, 2025). Similarly, animals
also possess vocal production mechanisms (A. A. Ghazanfar and Rendall, 2008). Although
the biological specifics may differ, the existence and use of such acoustic mechanisms is a
shared commonality for vocal communication in humans and animals. The emergence of self-
supervised learning, as a modern deep learning framework in speech and audio processing,
has produced models capable of learning representations directly from the raw acoustic input,
without incorporating any prior knowledge about the underlying production or perception
systems. Instead, they learn by identifying intrinsic structure in the spectro-temporal patterns
of the signal itself. Given that both human and animal vocalizations are inherently structured
and non-random signals that encode meaning, this thesis investigates whether representations
learnt from intelligible, high-resource human speech can transfer to the acoustic domain of
animal vocalizations. We hypothesize that such representations, learnt in a self-supervised
framework, can serve as a powerful prior for decoding complex, low-resourced animal vocal
signals. Prior to this work, and to the best of our knowledge, no prior study had systematically
explored this question. To investigate this hypothesis in depth, we formulate the following
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central research questions (RQs) that we address in this thesis:

RQL.

RQ2.

RQ3.

RQ4.

RQ5.

Can representations learnt from human speech through SSLs be transferred to bioa-
coustic tasks, and if so, to what extent?

How does a mismatch in auditory bandwidth between humans and the studied animal
affect this transfer?

Is this transferability specific to speech models, or can representations learnt from
general audio also exhibit a similar cross-domain utility?

Can adaptation of these pre-trained SSL models further improve the transferability ?

How well can these transferred representations capture and leverage the sequential
structure of animal vocalizations ?

By addressing these questions, this thesis aims to establish groundwork that can serve as a

practical foundation for future computational bioacoustics studies.

1.1

Context and Motivation

This work is carried out within the NCCR Evolving Language, an interdisciplinary Swiss Na-

tional Science Foundation initiative to explore the evolutionary origins and future of language

and communication. As part of the Transversal Technology Task Force work package, the

key motivation for this thesis is to help develop computational tools to support biologists,

linguists, and ethologists in their research on human and animal communication. This line of

research is especially useful for the following causes:

Conservation and biodiversity monitoring: passive acoustic recording offers a non-
invasive, scalable approach to track species presence, population, and behaviour over
time. Automated analysis of these recordings can alert conservationists to habitat
degradation, invasive species, or population decline without the need for costly field
surveys. To that end, integrating robust bioacoustics representations into real-time
sensor networks can facilitate continuous surveillance of remote habitats, and enable
tracking of ecological disturbances, species migration patterns, and general animal
welfare.

Comparative communication science: animal vocalizations encode multiple layers of
information, including individual identity, social intent, and environmental context,
that follow the functions of human language. Decoding these signals with learnt rep-
resentations can allow us to compare structural patterns, such as call repertoires or
sequences, across species. By projecting vocalizations from diverse taxa into a com-
mon embedding space, researchers could investigate whether underlying semantic or
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phonetic abstractions are shared, giving insight into the evolutionary pathways of vocal
learning and information encoding.

1.2 Thesis Outline and Contributions

The structure of this thesis is axed around the defined research questions (RQ), and is organized
as follows:

Chapter 2 provides the theoretical foundation necessary to investigate the aforementioned
research questions. We review essential deep learning concepts and key speech and audio rep-
resentations. Chapter 3 gives an overview of animal vocalizations and the type of information
they encode, and presents the datasets employed in this thesis.

Chapters 4 and 5 both investigate RQ1. In Chapter 4, we formulate our core hypothesis on
cross-domain feature transferability, and validate it with a proof-of-concept study on a caller
identity detection task. We then extend this approach across multiple datasets and multi-class
classification tasks in Chapter 5.

Chapter 6 addresses RQ2, where we examine the impact of the pre-training bandwidth on
downstream bioacoustics classification tasks. Chapter 6 also investigates RQ3 by comparing
performance of SSLs pre-trained on speech against those on general audio. Lastly, Chapter 7
completes the study by also examining SSLs pre-trained directly on animal vocalizations.

Chapter 7 and 8 both explore RQ4 in depth, studying various model adaptation strategies and
fine-tuning domains for potential improvements in animal call classification performance.

Chapter 9 explores RQ5 by proposing feature representations based on discrete token se-
quences, and and evaluates them for animal calls. Finally, Chapter 10 concludes this thesis
and suggests directions for future work.

Each chapter contains a schematic overview, publication note, and any supplementary ma-
terial and collaboration notes. The schematic diagrams do not directly match the chapters’
sections, but instead present a thematic overview.



¥4 Foundations of Deep Learning and
Speech Representations

The goal of this thesis is to decode non-human bioacoustic signals by leveraging machine
learning tools developed for high-resource human vocal communication. To that end, we
employed a variety of machine learning and deep learning networks, concepts, and techniques.
This chapter lays down the theoretical foundation for our work by first briefly reviewing
essential deep learning concepts, architectures, and layers in Section 2.1. Building on this
framework, we then explore various speech and audio representations relevant to bioacoustics,
including traditional handcrafted features, representations learned through deep neural
networks, and those derived from self-supervised learning and audio foundation models, in
Sections 2.2 to 2.4 respectively. The chapter serves as a bridge between fundamental deep
learning principles and the speech and audio methods used for extracting salient features
from bioacoustic signals.

2.1 Deep Neural Networks

2.1.1 Deep Learning Framework

Given a large dataset D(x, y) of paired input vectors x and target class labels y, deep learning
aims to learn the underlying mapping from the inputs to the targets. In this framework,
a deep neural network (DNN) approximates this mapping by modeling it as a parametric
function fy, where the parameters 6 are learned from the training data. For a given input x,
the network produces an output prediction j = fp(x) intended to match the true target label
y. In this context, the notion of learning or training refers to the process of finding optimal
parameter values 8* such that the network maps training inputs to their corresponding targets
as accurately as possible.

The function fj is typically constructed as a composition of several simpler, differentiable
sub-functions, commonly referred to as layers of the DNN:

for=fylo o fy?, 2.1)
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where L is the number of layers. Each layer / implements an affine transformation, and is
characterized by its own set of parameters 0; = {w;, b;}, denoting the weights w and biases b.
The term ‘deep’ in deep learning refers to networks with a high number of stacked layers.

The training process involves optimizing the parameters by minimizing a loss function £
that quantifies the discrepancy between the network’s predictions and the actual labels. This
is typically achieved using gradient descent, an iterative method where the parameters are
updated as follows:

0141 =0,—nVLO)), (2.2)

where 0; represents the value of the parameters of the model at iteration ¢ during training,
and 7 the learning rate. The gradients V.L(8;) are efficiently computed using backpropagation,
which applies the chain rule through the network layers. The overall training procedure is
summarized in the following three main steps as depicted in Figure 2.1:

1. Forward pass: calculates the activations for each layer using the inputs x and the current
parameters 6 of the model, to predict an output j.

2. Backward pass: computes the the gradients of the loss V.£ with respect to the activations
and parameters 6 by propagating the error backwards through the network using the
chain rule.

3. Gradient step: updates the existing parameters 0 of the model using equation (2.2).

Input Predicted label

1. Forward-pass

> DNN >

,Ly

2. Backward-pass

A
E 3. Gradient step

{ :
y > < e
L

Label Classification loss

Figure 2.1 - The deep learning framework. The loss function measures the quality of the network’s
output and provides a feedback signal to adjust the model parameters.

Once training is complete, the learned parameters are frozen, and the model’s generalization
capability is typically evaluated on an unseen test set. Moreover, the network can also serve as a
feature extractor, as the embeddings produced by its layers capture meaningful representations
of the input data. In this thesis, we predominantly work with pre-trained models, analyzing
the representations learned across different layers.

In short, a network transforms its input data into meaningful outputs, a process learned from
exposure to data samples and their labels. At its core, deep learning is about meaningfully

6
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transforming data, i.e. learning useful representations of the training dataset distribution that
bring us closer to the desired targets. This representation learning can also be understood from
a geometric perspective: the model applies a sequence of geometric transformations, with the
aim of learning disentangled representations of continuous and complex data manifolds in
high-dimension spaces, such that this space can be cleanly separable by class. Together with
the growing availability of data, improvements in computational hardware, and algorithmic
advances to the deep learning framework, this approach has driven the modern era of Al.

The following subsections provide a brief overview of the key deep learning architectures and
layers used in this thesis.

2.1.2 Linear Layer and Perceptron

The perceptron model was one of the earliest neural network models to see practical use in
machine learning (Rosenblatt, 1957). Its classification rule can is expressed as:

RC - R (2.3)
x—o(w-x+b). (2.4)

where the weights w € RP and bias b € R are the learnable parameters of the model, and x € R”
is an input vector. The perceptron essentially consists of a single linear layer, (w - x + b), which
performs an affine transformation. It is also known as a fully connected layer, because every
component of x is multiplied by a dedicated weight in w, and then summed together with a
bias term b. It is then followed by an activation function o : R — R. The non-linear activation
is what enables the model to learn more complex decision boundaries.

Figure 2.2 — Schematic representation of the operations in a perceptron model.

In recent years and in this thesis, a single linear layer (i.e., without an explicit non-linear
activation function) is frequently employed as a simple classifier head on top of extracted
feature embeddings from a frozen pre-trained network, particularly when the preceding layers
have already learned a sufficiently rich representation of the data. Geometrically, the fully
connected layer defines an afine transformation, whose zero-level set {x € R” : w-x + b = 0},
defines a decision boundary as a hyperplane which divides the input space into two separate
regions. Often, the extracted embeddings are sufficiently linearly separable that this simple
classifier can effectively distinguish between classes. As such, a fully connected layer not
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only serves as a fundamental building block in many modern DNN architectures but is also
commonly used at the end of a model to produce final class posterior probabilities.

In recent years and in this thesis, a single linear layer (i.e., without an explicit non-linear
activation function) is frequently employed as a classifier head on top of feature embeddings
extracted from a frozen pre-trained network, particularly when the preceding layers have al-
ready learned a sufficiently rich representation of the data. Geometrically, this fully connected
layer implements an affine transformation whose zero-level set, {x € RP: w-x+ b =0}, defines
a decision boundary in the form of a hyperplane that divides the input space into two regions.
Often, the extracted embeddings are sufficiently linearly separable that this simple classifier
can effectively distinguish between classes. As such, the fully connected layer serves not only
as a fundamental building block in many modern DNN architectures but also as an effective
classifier on its own.

2.1.3 Multiple-Layer Perceptron

The linear perceptron model can be extended to a multi-dimension output by applying a
similar transformation to every output, where w € R“*P, b e R¥, and o is applied component-
wise. For VI =1,..., L, we define a multilayer perceptron (MLP) as:

RP — RX (2.5)

x0 s o (w® x 07D 1 p0), (2.6)

where [ is the layer index. The intermediate layers between the input and output are referred
to as the hidden layers.

— N
w® p®D ) bpD
L J | J L J L J
r N ~ s N\ ~
. ) i i { i }> - : | i { i }[X(L) - y]
\ J U J \ J \ J
|\ J/ |\ /)
Layer 1 Layer L

Figure 2.3 - Schematic representation of the operations in a multi-layer perceptron model

According to the universal approximation theorem, a single hidden-layer perceptron with
sufficient neurons can approximate any continuous function on a compact domain (Hornik,
Stinchcombe, and White, 1989). This theorem underscores the expressive power of even
relatively simple MLP architectures, which is also often used a classifier head in this thesis.

8
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2.1.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (LeCun et al., 1989; LeCun and Bengio, 1998) extend
linear layers by focusing on local patterns within the input. Instead of connecting every input
unit to every output unit (as in a fully connected layer), a convolutional layer slides a small
kernel or filter across the input, computing a weighted sum over each local region. This local
connectivity allows the model to capture spatially or temporally localized features, making
CNNs especially useful for speech and audio tasks.

aw

v
\ 4

»
»

@ I o i
L
1 8 1

C‘x Kernel Filter

Quantized audio signal s

Il 10 | 30 | 50 | 70

Output

Figure 2.4 - 1D Convolutional layer applied to a signal s. C represents the number of filters, kW
the window length, and dW the window shift (e).

Figure 2.4 illustrates a one-dimensional convolution layer applied to an input signal s. Each
of the C filters is defined by a kernel of width kW, which is convolved with the signal in
overlapping windows. Formally, for each position in the signal, the convolution output is
obtained by element-wise multiplication of the filter weights and the corresponding segment
of s, followed by a sum:

x® kW = ixi-kW,-, 2.7

i=1

Where the convolution’s filter window length, also known as the kernel width, is denoted as
kW. The stride dW, i.e. the window shift, determines how far the filter moves at each step.
Because the operation is repeated locally, neighboring parts of the input influence neighboring
parts of the output, preserving the signal’s structure.

A convolutional layer is often paired with a max-pooling layer, which reduces the output
dimension by taking the maximum value within a local window of length kW, shifted by dW,
as presented in Figure 2.5).
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L dW - L |- L |-
0 1 2 3 4 5 6 7 8 9
Quantized audio signal s KW

Max-pooling

!

1 3 5 7

Figure 2.5 — Max-pooling applied to a signal s. kW and dW are the window length and shift (e).

2.1.5 Attention and Transformers

Although networks based on fully-connected and convolutional layers have achieved con-
siderable success, they also come with limitations. Fully-connected layers require fixed-size
inputs and quickly become impractical for very high-dimensional data. Convolutional net-
works, while effective at capturing local patterns, need multiple layers to model long-range
dependencies because each filter only covers a fixed-length context. In contrast, attention
layers overcome these issues by capturing weighted interactions across all positions in an
input sequence, making it easier to model long-range dependencies in high-dimensional or
variable-length inputs.

In an self-attention block, the input sequence x is first linearly projected into queries Q, keys
K, and values V. The attention weights A € RNVN*N are then computed as:

T
A= softmax( ?/I% ) , (2.8)

where D is the dimension of the keys K. The self-attention output of layer [ is given by:
SA;(x) = AV. 2.9)

These weights determine how much each element in the sequence should contribute to the
representation of every other element, effectively making the features context-aware.

A Transformer network is built by stacking multiple layers that combine self-attention with
feed-forward blocks (implemented as one-hidden-layer MLPs), along with layer normalization
and positional encoding. This architecture enables the model to capture global dependencies
efficiently and is central to many modern pre-trained speech recognition models used in this
thesis.

10
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2.2 Handcrafted Speech and Audio Representations

Traditional approaches to speech and audio analysis rely on handcrafted features derived from
expert knowledge in acoustics and signal processing. These knowledge-driven representations
capture essential aspects of audio signals, such as frequency content, temporal dynamics, and
spectral characteristics, that have long been instrumental in audio processing tasks. In this
section, we outline several of these representations which have been used for bioacoustics in
the literature, as well as in this thesis.

e Highly Comparable Time-Series Analysis (HCTSA) is an interpretable signal processing-
based framework that has been demonstrated to be useful for diverse time series applica-
tion domains (Fulcher, Little, and Jones, 2013). In this framework, a set of 7700 features
are extracted by characterizing the signal by different time series analysis methods, such
as, linear correlation, modeling fitting (e.g., autoregressive moving average analysis,
GARCH), wavelet analysis, extraction of information theoretic measures, which then
is combined with feature selection to build statistical models for the end task. In the
literature, these features have been investigated for bioacoustics, namely behavioral
birdsong discrimination (Paul et al., 2021), automated acoustic monitoring of ecosys-
tems (Sethi, 2020), as well as marmoset caller identification (Phaniraj et al., 2023). One
of the challenges of HCTSA approach is computational complexity and involves an
evaluation of many similar features.

¢ In arecent work, CAnonical Time-series CHaracteristics (Catch22) features, a subset of
the HCTSA feature set has been proposed which exhibit a strong performance across 93
real-world time-series classification problems, but are also minimally redundant (Lubba
etal., 2019).

2.3 Deep Learning based Speech and Audio Representations

Based on the general concepts and networks outlined in Section 2.1, this section presents the
speech and audio specific models developed with the advent of the deep learning framework.
Unlike the knowledge-driven features in Section 2.2, the representations given below are
learned automatically and purely from the audio data, without any specific assumptions.

* End-to-end raw-waveform modeling is a particular method in speech processing
that leverages both end-to-end acoustic modeling and raw waveform modeling with a
convolutional neural network. Figure 2.6 presents the complete pipeline for this network.
The input audio signal s is send through multiple blocks of the ‘feature learning stage’,
composed of a sequence of convolutional, max-pooling, and activation (typically TanH
or ReLU) layers. Then, the embedding size is reduced by sending through an 1D adaptive
average pooling, before flattening it and sending it through a final fully connected layer
and obtaining the posterior probability distribution through the softmax activation

11
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Audio Feature learning stage X N Classification stage (modeling)
signal s

Adaptive
\IM\/\‘ '.'[Avg-pOOIIDH Flatten H e H SO&max ]_>p(l IS)

Figure 2.6 — Complete end-to-end raw-waveform pipeline. The input is the raw audio signal s,
and the output is the posterior probability distribution p(i|x) for each class i. o represents an
activation function.

function. It is to be noted that the kernel filters in the convolutional layer are learned
during training, and the first convolutional layer cab be seen as signal processing filters
as they operate directly on the raw waveform (Palaz, Magimai.-Doss, and Collobert,
2019). To that end, the cumulative frequency response of these filters have been used
to gain a deeper understanding and interpretability of the information that these end-
to-end raw-waveform models learn during training (Muckenhirn, Magimai.-Doss, and
Marcel, 2018; Muckenhirn et al., 2019).

* Supervised features: Another strategy is to leverage models pre-trained in a supervised
fashion on large-scale audio datasets. One such example is the Pretrained Audio Neural
Network, or PANN (Kong et al., 2020), specifically the CNN14 architecture, which has
been trained on AudioSet, a large corpus of diverse general audio recordings. In contrast
to end-to-end raw waveform modeling, PANN operates on log-mel spectrogram inputs,
learning both spectral and temporal patterns of sound events.

In practice, CNN14 processes the extracted spectrograms with six 2D convolutional
blocks. Each block is composed of two convolutional layers with batch normaliza-
tion and ReLU activations, followed by an average pooling operation that progressively
reduces the time-frequency resolution while capturing increasingly abstract representa-
tions of audio events. Finally, a linear layer produces a 2048-dimensional embedding
that we can extract and use as a general-purpose audio representation. This approach
harnesses the strong generalization capabilities of supervised learning on extensive
labeled data, enabling robust feature extraction for downstream tasks.

2.4 Self-Supervised Speech and Audio Representations

Self-supervised learning (SSL) offers an alternative approach to speech and audio represen-
tation, one that does not require prior knowledge or target labels of input data. Instead, SSL
leverages vast amounts of unlabeled audio by training models to solve pre-text tasks, thereby
learning rich, transferable representations. In contrast to the supervised features discussed
earlier, which are learned from explicitly annotated datasets, SSL. methods exploit the inherent
structure of the data, allowing them to capture complex acoustic patterns that can be adapted
to a wide range of downstream tasks. In the following sections, we outline the historical evolu-
tion of SSL in speech processing and detail a general framework consisting of pre-training on

12
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unlabeled data followed by task-specific fine-tuning.

2.4.1 Historical Development

The emergence of self-supervised learning in speech processing can be understood through
three distinct developmental stages:

1. Clustering and mixture models: Initial methods involved semi-automatic clustering
of speech patterns using algorithms such as k-means, enabling recognition of isolated
words by matching test samples to the nearest training clusters. Advances led to subword
units being modeled using Gaussian Mixture Models (GMMs). Hidden Markov Models
(HMMs) introduced dynamical modeling, supporting recognition of continuous speech
rather than isolated words. These generative models (GMM/HMM) were typically
trained by maximizing data likelihood, employing both supervised and unsupervised
training strategies. Generative models were also utilized to extract informative speech
features, leveraging their learned representations for downstream tasks such as speech
recognition, speaker identification, and language verification.

2. Stacked neural models: The second wave transitioned from generative mixture models
to neural network-based approaches, inspired by advances in representation learning
techniques from computer vision and natural language processing (NLP). Compared
to GMMSs, neural architectures provided greater flexibility and capacity for modeling
diverse input signals. Techniques such as restricted Boltzmann machines (RBM), denois-
ing autoencoders, noise contrastive estimation (NCE), sparse coding, and energy-based
models emerged, initially within vision and NLP contexts, before adaptation to speech
tasks.

3. Learning through pre-text tasks: A more recent shift has been toward directly optimiz-
ing neural networks end-to-end using carefully designed pre-text tasks. Unlike earlier
methods relying on layer-wise training, third-wave approaches involve training all net-
work layers jointly. These methods frequently utilize very deep neural architectures,
often exceeding ten layers, and evaluate learned representations on diverse benchmark
tasks such as SUPERB for speech. The cornerstone of this third wave lies in pre-text
task design, allowing effective use of knowledge from large unlabeled datasets. Popular
tasks include generating complete information from partial inputs—such as predicting
masked tokens (BERT series) or next tokens in sequences (ELMo, GPT)—and contrastive
learning, where models learn representations by differentiating target instances from
negative samples.

2.4.2 SSL Framework and Pre-Text Tasks

Figure 2.7 depicts the typical two-stage framework of self-supervised learning (A. Mohamed
etal., 2022). It can be summarized as follows:
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1. Pre-training

,‘“nn SSL Pre-text
, Model Task
Unlabeled corpus

Training criterion

Representations

q,"\n Downstream
Task

Labeled data 2. Fine-tuning

l€====ccnaaad

Figure 2.7 — Self-supervised learning two-stage framework.

1. Pre-training: The network is first pre-trained on vast amounts of unlabeled data using

self-supervised objectives. During this phase, the model learns to extract meaningful
and transferable representations by solving carefully designed pre-text tasks, such as
predicting masked segments, reconstructing corrupted inputs, or contrasting similar
and dissimilar samples. This process enables the network to capture rich, underlying
structures in the data without relying on explicit labels.

. Fine-tuning: Following pre-training, the learned representations are adapted to spe-

cific downstream tasks in the fine-tuning stage. Here, the pre-trained model is either
further trained on a smaller labeled dataset or its fixed embeddings are used as input
features for task-specific classifiers. Fine-tuning allows the network to tailor its generic,
self-supervised features to the particular requirements of applications such as speech
recognition, speaker identification, or other audio classification tasks.

The pre-text tasks for speech and audio SSL networks can be broadly categorized into the

following four groups:

14

1. Autoregressive reconstruction: In this approach, the model is trained to generate future

frames in an autoregressive framework. By learning to generate upcoming segments
based on past context, the network implicitly captures the temporal dynamics and
structure of the audio signal. Models such as APC (Chung et al., 2019) and VQ-APC
(Chung, Tang, and Glass, 2020) both operate on spectrogram representations, and utilize
this strategy, where the sequential prediction task forces the network to encode both
local and global dependencies.

. Masked reconstruction: This category involves reconstructing portions of the input

signal that have been intentionally masked out. Unlike autoregressive methods that
predict future frames, masked reconstruction tasks require the model to fill in missing



2.5 Bioacoustics Features

acoustic frames, encouraging it to learn contextual information from both preceding
and following segments. Models such as NPC (A. H. Liu, Chung, and Glass, 2021),
Mockingjay (A. T. Liu et al., 2020), and TERA (A. T. Liu, S.-W. Li, and Lee, 2021) employ
this approach on a spectrogram basis. The approach is analogous to image inpainting in
computer vision, and it benefits from the network’s ability to model the overall structure
of the audio spectrum.

3. Masked prediction: The network is trained to predict discrete pseudo-labels for the
masked regions instead of directly reconstructing the raw acoustic features. This task
forces the model to abstract the input signal into a higher-level, categorical represen-
tation, capturing salient characteristics that can be beneficial for downstream tasks.
Models such as HuBERT (W.-N. Hsu et al., 2021) and WavLM (S. Chen et al., 2022) adopt
this framework directly on the raw waveform. The learning process here bridges the gap
between unsupervised feature extraction and supervised classification by encouraging
the network to focus on the most informative parts of the input.

4. Contrastive learning: Contrastive approaches train the model to distinguish between
similar (positive) and dissimilar (negative) samples. By formulating the learning prob-
lem as one of discriminating between correct and incorrect pairings, contrastive meth-
ods encourage the network to learn representations that cluster similar audio events
together while pushing apart representations of different events. This method, em-
ployed by models such as Modified CPC (Riviere et al., 2020) and Wav2Vec2 (Baevski
et al., 2020), operates directly on raw waveforms using convolutional layers. By framing
the task as one of similarity learning, it leverages deep networks to capture both local
and global contextual cues.

2.5 Bioacoustics Features

In very recent years, researchers have begun to pre-train models directly on bioacoustics data,
marking a departure from earlier approaches that relied on the transferability of speech and
general audio representations. While the previous sections described handcrafted features,
deep learning models, and self-supervised techniques developed primarily on human speech
or large-scale general audio datasets, direct pre-training on bioacoustics aims to capture
species-specific acoustic patterns and other biological nuances.

One of the first and most comprehensive approaches in this domain is the AVES model family
(Hagiwara, 2023a), which trains using HuBERT’s architecture but on animal vocalizations
instead of human speech. The AVES models are pre-trained using a masked-prediction task
on a mixture of publicly available audio datasets—including FSD50K (Fonseca et al., 2021),
AudioSet (Gemmeke et al., 2017), and VGGSound (H. Chen et al., 2020), thus exposing the
model to a diverse range of bioacoustic signals.
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2.6 Feature Extraction and Classifiers

Many of the networks described earlier are used in this thesis in their frozen, pre-trained
form to leverage the robust representations they have already learned from large-scale data.
Freezing these networks not only reduces computational and data requirements during our
experiments, but also allows us to focus on evaluating the saliency of these representations,
by training a separate classifier head without altering the underlying network or the extracted
features. Figure 2.8 illustrates this pipeline: an input audio signal s is passed through the frozen
feature extractor F to obtain a feature vector x € RP. It can be feature embeddings averaged
on the temporal axis, or a single feature vector obtained as handcrafted representations. This
vector then serves as input to a classifier head, with parameters 6, which is trained with
backpropagation to predict the class label .

Handcrafted
Audio signal or pre-trained Features
seR” xeRP Predicted label
A
Feature ) c arg max p,
—» Extractor —» —t » y
F
? 4
Frozen 3 ! Posterior distribution
l Backpropagation ! pe(y = k|x)
y > L) II:
Label Classification loss

Figure 2.8 — Feature extraction and classification pipeline of a single layer.

By freezing the feature extractor, we retain the broad, domain-relevant information learned
during pre-training, while training the classifier to the specific downstream task at hand.

In addition to using deep learning-based classifiers such as linear layers and MLPs (see
Section 2.1), we also explore traditional machine learning classifiers. These methods are based
on well-established statistical principles, operate independently of deep learning frameworks.
Furthermore, unlike deep learning models, which typically require large amounts of data,
these can perform effectively even on smaller datasets. The following traditional ML classifiers
were used in our experiments:

e Support Vector Machines (SVMs) operate by first mapping input data into a high-
dimensional feature space, in which the decision boundary can be represented as a
hyperplane. Then, they identify the optimal hyperplane by maximizing the margin
between the positive and negative classes. Initially developed as the maximum mar-
gin classifier (V. N. Vapnik and Lerner, 1963), the method evolved into support vector
classifier or soft-margin SVM through the introduction of a soft margin (Cortes and
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V. Vapnik, 1995). It further advanced to support vector machines by incorporating kernel
methods (Boser, Guyon, and V. N. Vapnik, 1992), enabling non-linear boundaries, and
subsequently generalized to multi-class classification framework (C.-W. Hsu and Lin,
2002).

* Decision Trees: Decision trees partition data by successively splitting it based on feature
values, using measures such as Gini impurity or information gain, to arrive at a final
decision at the leaf nodes. Building on this concept, Random Forests (RF) create an
ensemble of decision trees by training each on random subsets of data and features,
with the final prediction determined by aggregating the individual trees’ votes (Breiman,
2001). AdaBoost (AB), in contrast, constructs a sequence of simple decision trees
(often shallow ones known as decision stumps) where each subsequent tree focuses on
correcting the errors made by its predecessors (Freund and Schapire, 1997). Together,
these ensemble methods demonstrate how combining multiple models can lead to
more robust and accurate predictions than any single decision tree alone.

2.7 Classification Evaluation Metrics

A classification model can either correctly classify a sample in its actual class, or it can incor-
rectly predict it to be in another class. When comparing the predicted class with the ground
truth, we can obtain true positives (TP), true negatives (TN), as well as, false positives (FP) and
false negatives (FN). Based on these, on can compute additional metrics, as given below:

* Accuracy: The proportion of correctly classified samples over the total number of
samples. This metric provides a general measure of a model’s overall performance.
TP+TN

ACC= (2.10)
TP+TN+FP+FN

¢ Precision: The ratio of true positive predictions to the total number of positive predic-
tions made by the model. It reflects the model’s ability to avoid false positives.

TP

p-_ " 2.11)
TP+FP

* Recall: Also known as sensitivity or the true positive rate (TPR), recall is the ratio of true
positive predictions to the total number of actual positive instances. It indicates how
effectively the model identifies all relevant cases.

TP

R=——— (2.12)
TP+FN

e F1: The harmonic mean of precision and recall. The F1 score balances both metrics to
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provide a single measure that accounts for both false positives and false negatives.

2-P-R
Fl1 =
P+R

(2.13)

¢ AUC: The Area Under the Receiver Operating Characteristic (ROC) Curve. AUC mea-

sures the model’s ability to distinguish between classes across all possible classification
thresholds. It essentially gives a number to the ROC curves, which tell us the strength
of classification rates in numbers. A ROC-AUC curve can be visualized by plotting a
classifier’s type TPR against its FPR, as shown in Figure 2.9a). We ideally want the ROC
curve to be as close as possible to the ideal (0,1) point, and thus the AUC to be as close
to 1 as possible.

Confusion Matrix: allows one to visualize the accuracy of a model’s classifier by com-
paring its predictions against the ground truths for each class. Figure 2.9b) shows what
an ideal normalized confusion matrix would look like.

UAR: Unweighted Average Recall is the mean recall calculated across all classes, treating
each class equally. This metric is particularly useful in scenarios with imbalanced class
distributions, and is therefore extensively used throughout this thesis.

TPR Normalized confusion matrix
1.0
0.8
3 L 0.6
©
()
2
= L 0.4
L0.2
_ _ _ L o.0
\ 0 1 2 3
1 » FPR Predicted label

Figure 2.9 - Left: Sample ROC curve and its corresponding Area Under the Curve (AUC). The diag-
onal baseline represents a ‘line of no-discrimination’, and the (0,1) spot is the ideal classification
point. Right: Ideal confusion matrix of 4 classes. The diagonal and off-diagonal cells respectively
represent the model’s normalized correct and incorrect class predictions rates.

2.8 Summary

This chapter provided an overview of the theoretical deep learning foundations as well as

various speech and audio representations, which form the basis of this thesis. We began first
by reviewing key deep learning concepts, including fundamental building blocks such as
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linear layers and multilayer perceptrons, and progressed to more advanced architectures such
as convolutional neural networks and Transformers. We then examined both handcrafted
and learned representations of speech and audio signals, highlighting how deep learning and
self-supervised approaches can automatically extract informative features without explicit
knowledge-driven design. We also introduced a common pipeline for feature extraction, em-
phasizing how frozen pre-trained models can be leveraged for downstream tasks with minimal
additional training. Lastly, we listed traditional machine learning methods to complement the
neural network-based classifiers, and concluded with an overview of the evaluation metrics
used to assess model performance. In the next chapter, we will take a deeper look at the actual
animal vocalizations datasets and the bioacoustics tasks we aim to solve.
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Animal Vocalizations

This chapter presents an in-depth overview of the types of animal vocalizations studied in
this thesis and their associated bioacoustic classification tasks. Building on the theoretical
foundations and representation learning techniques discussed in Chapter 2, we now focus on
real-world bioacoustics data from non-human primates, marine mammals, and domestic dogs.
These species provide acoustically diverse vocalizations that are well-suited for evaluating
the transferability of speech-based representations across taxa. The tasks addressed include
multi-class classification, such as call-type identification (CTID), caller identification (CLID),
and, where applicable, sex classification (SID). Through these datasets, we aim to explore the
unique acoustic properties of different animal vocalizations and demonstrate the potential
of modern machine learning techniques for decoding animal vocal communication. We
clarify that this thesis focuses only on vocalization-based animal communication, i.e. signals
produced by a vocal tract, and does not investigate other communication modalities such as
gestures or non-vocalization sounds.

Table 3.1 — Dataset descriptions and statistics. L denotes the total length [minutes], S the number
of samples, ng the number of classes, SR the sampling rate [kHz], u the median length [ms].

Dataset Animal S L SR ncrip Rncup  BsID M o
MV Marmosets 72,920 464 44.1 11 10 - 127 375
Bosshard Marmosets 13,808 37 300 7 8 2 117 181
Wierucka Marmosets 4,901 138 125 12 8 2 1,037 1,687
Watkins Mammals 1,697 295 - 32 - - 1,701 71,245
Abzaliev  Dogs 8,034 137 48 14 80 2 655 1313

Table 3.1 presents a statistical summary of the used datasets. Section 3.1, 3.2, and section 3.3
provide an overview of the marmoset, marine mammal, and dog datasets, respectively, along
with our motivation for studying them.
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3.1 Marmosets

Marmosets are a central focus of this thesis, as their vocal behaviour provides a particularly
valuable model for studying the evolutionary origins of human language. Their relevance
to comparative communication science makes them especially well-suited for exploring
how vocal signals encode socially and biologically meaningful information across species.
Section 3.1.1 further motivates this focus and provides a detailed survey on marmoset call

analysis.
15000—0: Pre-Phee  1:Phee 2 Twitter  3: Trill _4:Trillphee  5:Tsik Tse ~  6: Egg _7:PheeCry  8: TrllTwitter 9: Pheetwitter  10: Peep
§ 8000~ — - I« el ] ,__§ ] | |
8 4000~ - . 4 . . - R — g ] i
P

Figure 3.1 - Marmoset vocalizations by call-type.

3.1.1 Surrogate Models for Non-Human Primate Communication

Common marmosets (Callithrix jacchus) have recently gained prominence as a valuable
research model among non-human primates. This is primarily due to their exceptional vocal
abilities, which are rooted in their highly complex social behavior and cooperative breeding
system (Eliades and Miller, 2017; Burkart et al., 2022). They possess extensive vocal repertoires
used in various social situations (J. A. Agamaite et al., 2015; Bezerra and Souto, 2008), and their
vocalizations have the capacity to encode a wide range of information, such as population,
group affiliation, sex (Norcross and Newman, 1993), dialect (Ziircher and Burkart, 2017), and
even individual caller identity (BS, DHR, and CK, 1993; Newman JD, 1992; Rukstalis and
French, 2005; Phaniraj et al., 2023). These vocalizations are not limited to simple tonal signals
but also encompass complex calls with multiple frequency components, some of which are
within the ultrasonic range (J and JAM, 2018), and are expressed over a number of social and
emotional states (Epple, 1968; R. Seyfarth and D. Cheney, 2003).

Moreover, marmosets have been observed to exhibit remarkable vocal adaptability. They
can alter the duration (Brumm et al., 2004), intensity (Brumm et al., 2004; Eliades and X.
Wang, 2012; Pomberger, Loschner, and Hage, 2020), complexity (Pomberger et al., 2018), or
timing (Roy et al., 2011) of their calls, even when faced with disruptions in their environment
that occur after the initiation of a call (Pomberger, Loschner, and Hage, 2020). These vocal
characteristics align them closely with human speech properties, such as care-giving to infants,
turn-taking (D. Takahashi, Fenley, and A. Ghazanfar, 2016), and categorical perception of
sounds (Osmanski and X. Wang, 2023), and make them into a well-suited surrogate model for
understanding the vocal communication of non-human primates among biologists (Worley
and al., 2014) and neuroscientists (Okano, Miyawaki, and Kasai, 2015).

While these properties make marmosets an intriguing subject for the study of communication
processes, they also pose a significant challenge when attempting to automate the analysis
of their vocalizations. In the literature, the automatic analysis of marmoset vocalizations,
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i.e. such as call-type, caller identity, or sex classification, has been conducted by leveraging
signal processing features alongside traditional machine learning classifiers. (Turesson et al.,
2016) compared different classification methods for marmoset call-type classification using
linear prediction coefficients as feature representation, and found that on a small data setup
of 30 samples per call-type, k-NN, SVM, and optimal path forest algorithms yielded better
performance than multilayer perceptron, Adaboost, and logistic regression. (Wisler et al.,
2016) investigated different feature representations, namely, audio features (statistics based
on energy entropy, signal energy, zero crossing rate, spectral rolloff, spectral centroid, and
spectral flux), mel-frequency cepstral coefficients (MFCCs), and Teager energy operator-based
features for marmoset vocalization and call-type detection. On a synthetic dataset created by
taking a small set of calls and augmenting it with background noise and acoustic events, it was
found that feature-level combination led to better performance.

(Verma et al., 2017) investigated discovering different patterns in marmoset calls through
unsupervised learning. Specifically, they developed an HMM-based approach to segment
and cluster marmoset vocalizations into discrete units through multi-resolution and multi-
rate analysis of the signal. In (Y. Zhang et al., 2018), it was demonstrated that marmoset
vocalizations and call-types can be better detected and classified by feeding statistics of log-
mel filter bank energies as input to recurrent neural networks (RNNs), when compared to
SVM or multilayer perceptrons. In the scenario of analyzing recordings obtained from a
pair of marmosets, (Oikarinen et al., 2018) investigated a deep learning approach where a
spectrogram was fed as input to a convolutional neural network to jointly perform vocalization
detection, call-type classification, and caller detection. It was found that joint modeling
yielded better performance than training systems individually for each task in this scenario.
Highly Comparable Time-Series Analysis (HCTSA) features have also been used to model
source (caller) identification through an Adaboost-based hierarchical approach for marmosets
(Phaniraj et al., 2023), as well as for 14 mammalian species (Wierucka et al., 2024).

Recent studies have begun exploring the self-supervised learning (SSL) framework, which
leverages unlabeled data by creating surrogate labels from the data’s inherent structure. This
has led to works investigating birdsong detection (Saeed, Grangier, and Zeghidour, 2021a)
and bioacoustic event detection (Bermant, Brickson, and Titus, 2022a) through contrastive
pre-training. However, systematic investigations of self-supervised learning for animal vocal
communication remain largely limited. In particular, their potential transfer from human
speech to marmoset vocalizations holds great promise for uncovering cross-species represen-
tational similarities that may shed light on the evolutionary origins of language.

3.1.2 Datasets

 InfantMarmosetsVox (IMV) (Sarkar and Magimai.-Doss, 2023) is an extended version
of the dataset used in the study on marmoset call type discrimination by (Y. Zhang
et al., 2018). The dataset consists of 72,920 audio segments representing 11 different
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call-types, and amounting to 464 minutes of vocalizations. The data contains 350 files of
precisely labeled 10-minute audio recordings across all ten caller classes. The audio was
recorded from five pairs of infant marmoset twins, each recorded individually in sound-
proofed rooms at 44.1 kHz SR, without communication with other marmoset pairs or
the experimenters. The audio recordings were manually labeled by an experienced
researcher using the ‘Praat’ tool. For each vocalization, the start and end time, call type,
and marmoset identity are been provided. Although a large dataset by bioacoustics
standards, each segment is predominantly short, at a median length of 127 ms. The
spectral range of the calls is mostly centered at around 7-8 kHz, although there is still
some information present above 16 kHz (Sarkar and Magimai.-Doss, 2024). The calltypes
are entitled peep (pre-phee), phee, twitter, trill, trillphee, tsik tse, egg, pheecry (cry),
trllTwitter, pheetwitter, and peep calls.

The Bosshard (Bosshard, 2020; Bosshard et al., 2024) dataset consists of 102 labeled
10-min focal audio recordings of common marmoset calls recorded in six behavioural
contexts. A pair of marmosets was either separated or in the same enclosure, with
preferred food either freely available for the focal individual or not. Each of the 8
subjects was recorded on 16 separate occasions. Most of the calls were given in bouts as
holistic single call units, and thus, a call-type unit was defined as a call bout with call
elements which were not further apart than 0.5s, as per existing literature (J. A. Agamaite
etal., 2015; Snowdon and Elowson, 2001). We only used the segments labeled as single
call elements, i.e. not split up in bouts, to avoid data overlap and duplication. The
dataset consists of 7 calls, namely alarm, ek, food, phee, trill, tsk, and twitter. The audio
recordings were manually annotated by using Avisoft SASLab Pro (Avisoft Bioacoustics,
Feb. 2017) to narrowly label the start and end of each call-type. The data was collected
under Swiss legislation and licensed by Zurich’s cantonal veterinary office (license ZH
223/16 and ZH 232/19).

The Wierucka dataset was collected from 6 target adult common marmosets, 3 male and
3 female, housed at the University of Zurich. Two additional non-target individuals were
also included in the dataset, summing to 8 individuals in total. The data consists of 12
calls classes: phee, trill, food call, tsk, low tsk (tsk with a peak frequency of approximately
7-9 kHz), twitter (sequence), ek, phee sequence (multiple phees), low tsk sequence (mul-
tiple low tsks), ek sequence (multiple eks), food call sequence (multiple food calls). All
procedures were done in accordance with Swiss legislation and were licensed by Zurich’s
cantonal veterinary office (license ZH223/19). For each recording, two individuals (one
male and one female) were placed in adjacent wire cages and recorded simultaneously
in 15-minute intervals with two UltraSoundGate 116H recorders coupled with an Avisoft
CM16/CMPA condenser microphone (Avisoft Bioacoustics, Germany), each set to a dif-
ferent gain to capture both low and high amplitude calls with a sampling rate of 125kHz.
A total of 12 recordings, spread over 7 months, were made for each target individual.
Caller identity was labeled in real time using Avisoft-RECORDER USGH (Avisoft Bioa-
coustics, Germany). The labelling of the calls’ exact start and end points was carried out
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through a visual examination of the spectrograms. For inclusion in subsequent analyses,
calls needed be distinctly visible on the spectrogram, devoid of any interference from
other calls, and readily classifiable into specific call-type categories.

3.2 Marine Mammals

Marine mammal vocalizations are characterized by a wide range of acoustic features due to the
diverse species and their varied communication contexts. These vocalizations often exhibit
significant variation in frequency content and temporal structure, reflecting the adaptations
of these animals to their underwater environments.

The Watkins dataset (Sayigh et al., 2017) contains the recordings of different marine mam-
mals, such as specific dolphins, whales, and seals. We chose Watkins for its multi-species
vocalizations, rich acoustic variety, and high variance in segment lengths (figure 5.1). It has
been commonly used for bioacoustic benchmarking, particularly for evaluating modern deep
learning models (Hagiwara, 2023a; Hagiwara et al., 2023b). We chose the ‘best of’ cut of the
original dataset, a selected subset from the original 15,000 samples in total, deemed to be of
higher sound quality and to contain less noise. The final dataset contains 1697 vocalization
segments from 32 different species, totalling to 295 minutes, with a median length of 1701s.
The sampling rate (SR) varies according to the recorded species.

3.3 Dogs

Dog vocalizations offer another intriguing domain for bioacoustic research, where subtle
differences in bark types and other sounds can convey distinct emotional states or intentions.
In our study, we focus on datasets that capture a range of canine vocal behaviors—from
aggressive or fearful barks to those associated with excitement or owner interaction.

Abzaliev dataset is novel dog dataset (here referred to by the first author’s name) consisting
of 8,034 total vocalizations (Abzaliev, Perez-Espinosa, and Mihalcea, 2024). It contains 14
different call-types, ranging from normal, aggressive, fearful, and playful barks at strangers (IDs
0-3), to vocalizations related to owner interaction (4-5) and non-stranger/non-play sounds
(6). It also contains postive or negative whines (7-8) and growls (9-10), barks associated with
sadness or anxiety (11), and excitement upon the owner’s arrival home (12). The recordings
originate from various dog breeds, including Chihuahuas, French Poodles, and Schnauzers.
The data was recorded at 48 kHz SR from a microphone, and followed a protocol designed
and validated by experts in animal behavior. The dog vocalizations were induced by exposing
the dogs to different types of external stimuli, with the participation of the owner and/or
experimenter. We discard all the segments labeled as non-dog sounds, such as TV, cars, and
appliances.
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3.4 Summary

Together, these animal datasets provide the foundation for investigating how self-supervised
representations learnt from human speech can be transferred to decode non-human vocal
communication. In the following chapter, we begin this investigation with a proof-of-concept
study on caller identity detection in marmosets, evaluating how well different SSL models can
encode individual animal identity information from their vocalizations.
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Publication Note

The material presented in this section is adapted from the following works:
e E. Sarkar and M. Magimai.-Doss (2023). “Can Self-Supervised Neural Represen-
tations Pre-Trained on Human Speech distinguish Animal Callers?” In: Proc. of
Interspeech, pp. 1189-1193.

Supplementary Material

* Source Code: https://github.com/idiap/ssl-caller-detection.

4.1 Introduction

The study of animal vocalizations, or bioacoustics, has progressed significantly in recent
years due to approaches inherited from machine learning and deep learning (Stowell, 2022a).
However, most of these are supervised approaches, which require large amounts of labeled
data, which is often scarce in bioacoustics. Self-supervised representation learning (SSL) has
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emerged as a powerful tool in speech processing to leverage unlabeled data by pre-training
models to solve pretext tasks using surrogate labels created from the structure inherent to the
data itself. Given an acoustic waveform signal as input, an SSL model uses said labels and the
pretext task to train and iteratively optimize its learning objective. The information encoded
in the representations can vary depending on the selected learning objective, which can be
roughly categorized into generative and discriminative approaches. Generative methods try
to either reconstruct masked acoustic frames (A. H. Liu, Chung, and Glass, 2021; A. T. Liu
etal., 2020; A. T. Liu, S.-W. Li, and Lee, 2021), or predict future frames using an auto-regressive
framework (Chung et al., 2019; Chung, Tang, and Glass, 2020). Discriminative approaches
either learn by contrastive learning, i.e. discriminating positive samples from negative ones
(Riviere et al., 2020; Baevski et al., 2020), or else by predicting pseudo-labels of discrete masked
regions (W.-N. Hsu et al., 2021; S. Chen et al., 2022; Baevski et al., 2022) or the output of specific
hidden layers (H.-J. Chang, S.-w. Yang, and Lee, 2022). The representations learnt from the
chosen SSL model can then be further fine-tuned to a wide range of speech downstream tasks,
which have yielded state-of-the-art results on the SUPERB benchmark (S.-w. Yang et al., 2021).

Self-supervised learning only utilizes the intrinsic structure of unlabeled data without any re-
liance on domain-specific knowledge, such as human speech production, to capture essential
information about the input data, and extract high-level representations in an embedding
space. Thus, the utility of such representations may not only be restricted for modeling human
speech, as demonstrated by recent works on other acoustic domains such as music (Wu et al.,
2021; Zeng et al., 2021) and biomedical signals (Banville et al., 2021; Banville et al., 2019).
Given this understanding, and the fact that both humans and animals have a voice production
system, our objective is to investigate the cross-transferability of representations learned from
human speech for analyzing animal vocalizations.

To that end, we conduct an animal caller detection study on Marmoset (Callithrix jacchus)
vocalizations, and demonstrate its applicability through means of eleven different SSL models
pre-trained with different pretext tasks. Our study also aims to provide practical benefits to
biologists and ethologists by providing a framework to distinguish individual identities within
the same animal species, which is an understudied topic in bioacoustics and a much harder
problem than across-species classification (Stowell, 2022a). Some previous works has explored
birdsong detection (Saeed, Grangier, and Zeghidour, 2021b) and bioacoustic event detection
(Bermant, Brickson, and Titus, 2022b) using contrastive learning, however, the generalization
of SSL models to animal vocalizations has largely remained unexplored. To the best of our
knowledge, no previous study has looked into caller detection by utilizing the embedding
space learnt by pre-training on human speech.

4.2 Study Design

This section presents the study design to systematically investigate the cross-transferability
of representations learned from human speech for animal caller detection. Specifically, we
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design a study with the following research questions:

1. How discriminative are the embedding spaces of SSL models pre-trained on human
speech?

2. Can we systematically detect individual Marmoset callers using said embedding space?

The remainder of the section presents the dataset, research framework, and selection of SSL
models for our investigations.

4.2.1 Dataset

For our study, we requested and used the marmoset dataset collected and labeled by (Y.-].
Zhang et al., 2018), defined as InfantMarmosetsVox (IMV) in Chapter 3. It contains audio
recordings of eleven different marmoset calltypes, such as Twitters, Phees, and Trills, manually
annotated using the Praat tool. The audio was recorded from five pairs of infant marmoset
twins, each recorded individually in two separate sound-proofed recording rooms at a sam-
pling rate of 44.1 kHz. The start and end time, call type, and marmoset identity of each
vocalization are provided, labeled by an experienced researcher. The data contains 350 files
of precisely labeled 10-minute audio recordings across all caller classes. We downsample
the data to 16 kHz, remove all segments labeled as ‘silence’ and ‘noise’, and only keep the
vocalization segments, amounting to a total of 464 minutes over 72,921 vocalization segments,
with a mean and median length of 381 +375 ms and 127 ms respectively. Figure 4.1 shows
the imbalanced distribution of vocalizations per caller, color coded by calltype. We divide
the entire data into training, validation, and test sets, named Train, Val, and Test respectively,
following a 70:20:10 split. This distribution allows us to train models on a sufficiently large
dataset while ensuring that we have sufficient data for model evaluation and validation. Train
is used to train the models, Val to tune hyperparameters, and 7est to evaluate the trained
models on unseen data.
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® [ Phee [ Pheecry
§ 12500 B Twitter TrilTwitter
T . Til = Pheetwitter
= 10000 B Trillphee N Peep
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Figure 4.1 — Vocalization per callers grouped by call-type.
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4.2.2 Caller-Groups

Duration (s)

Figure 4.2 - Log distribution of vocalization lengths for callers 1-10 represented in different colors.
The mean and median are calculated over the entire dataset.

For our study, neural embeddings are extracted from the pre-trained SSL models by giving
the Marmoset vocalizations as input for the purpose of caller detection. The log distribution
of vocalization lengths in this dataset, depicted in Figure 4.2, exhibits a bimodal structure
consistent with prior findings (Huang et al., 2022; D. Y. Takahashi, Narayanan, and A. A.
Ghazanfar, 2013). However, the same figure also illustrates that the vocalization segments
in this dataset are predominantly short, with a median segment length of around 125 ms.
Considering the lack of prior knowledge for this task, we took inspiration from i-vector and
x-vector based speaker verification systems, where utterance lengths considerably longer than
a short-term window size are modeled to achieve high performance (Dehak et al., 2011; Snyder
etal., 2018a). More precisely, in order to effectively model each caller while accounting for the
low vocalization segment length as well as to explore the acoustic variations within each caller,
we first split all the vocalization embeddings by caller. Then, in order to maintain the chosen
70:20:10 split ratio of our data sets, we divide the embeddings of each caller sequentially into
a fixed number of groups, hereafter referred to as ‘caller-groups’. We set the number of said
groups to 100 for Train, and proportionally scale for Val and Test. This results in a total of 1000,
280, and 140 groups across all callers for Train, Val, and Test sets, respectively.

4.2.3 Embedding Spaces

We carry out caller discrimination analysis and caller detection studies by computing the first
and second order statistics of the SSL embeddings in the caller-groups. For this purpose, we
select eleven pre-trained SSL models from the SUBERB leaderboard (S.-w. Yang et al., 2021)
based on the different pretext tasks seen in Section 5.1, and use the S3PRL toolkit (S.-w. Yang
et al., 2021) to extract the embeddings. Table 4.1 lists the chosen models, along with their
number of parameters P in millions, and the dimension D of the last layer embedding. All the
models have been pre-trained on the LibriSpeech (LS) corpus, except Modified-CPC which is
pre-trained on the Libri-Light (LL) corpus.
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Table 4.1 — Selected pre-trained SSL models on human speech. P indicates the number of parame-
ters in millions, and D corresponds to the dimension of the last layer embedding.

Model Corpus p D Pretext Obj.
APC (Chung et al., 2019) LS 360 4.11 512 Autoreg. Rec.
VQ-APC (Chung, Tang, and Glass, 2020) LS 360 4.63 512 Autoreg. Rec.
NPC (A. H. Liu, Chung, and Glass, 2021) LS 360 19.38 512 Masked Rec.
Mockingjay (A. T. Liu et al., 2020) LS100 21.33 768 Masked Rec.
TERA (A. T. Liu, S.-W. Li, and Lee, 2021) LS 100 21.33 768 Masked Rec.
Mod-CPC (Riviere et al., 2020) LL 60k 1.84 256 Contrastive
Wav2Vec2 (Baevski et al., 2020) LS 960 95.04 768 Contrastive
Hubert (W.-N. Hsu et al., 2021) LS960 94.68 768 Masked Pred.
DistilHubert (H.-J. Chang, S.-w. Yang, and Lee, 2022) LS 960 27.03 768 Masked Pred.
WavLM (S. Chen et al., 2022) LS 960 94.38 768 Masked Pred.
Data2Vec (Baevski et al., 2022) LS960 93.16 768 Masked Pred.

4.3 Caller Discrimination Analysis

This section presents a discrimination analysis of SSL embedding spaces for the purpose of
marmoset caller distinction. For this study we only use the Train portion of the data.

In order to conduct this analysis on our data, we first model the embedding spaces of each
caller-group with a multivariate Gaussian distribution A/ (g, £) with mean u and diagonal
covariance matrix X, resulting in a total of 100 multivariate Gaussians for each caller.

Subsequently, we compute the inter-caller and intra-caller distances by comparing the multi-
variate Gaussian distributions, as illustrated in Figure 4.3. Specifically, for inter-caller distances,

we calculate a total of 100100 pairwise distances for each pair of callers. For intra-caller

100
2

Gaussians of a pair of caller-groups, we use two measures, namely the Kullback-Leibler (KL)
divergence and Bhattacharyya distance, both of which produce distances in the range of

distances, we compute a total of (*,") distances. To compute the distance between the the

[0, +00). The latter provides a symmetric measure while the former does not.

Equations 4.1 and 4.2 respectively provide the formulas for calculating the KL divergence Dy,
and Bhattacharyya distances Dp¢ between two multivariate Gaussian distributions A rand
Ny (Durrieu, Thiran, and Kelly, 2012; Bhattacharyya, 1943). In the case of the KL divergence,
the mean vector g, covariance matrix %, determinant |X|, and dimensionality d are utilized.
Meanwhile, the Bhattacharyya distance uses the arithmetic mean of the covariance matrices
Zfrand Zg as X.

1

Dx1.(f118) =

1Zgl -1 Ty-1
(loglz—f| +Te(Zg Zp)+ (Hp—pg) Zg (llf—}lg)—d) 4.1)
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Figure 4.3 — We sort the Train embeddings by caller identity (CID1-10), and then split each of
those into caller-groups (G1-100). We then model each caller-group’s embedding spaces of with a
multi-variate Gaussian distribution A/ (u, ), and calculate the intra and inter-group distances.
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N

Once we have computed the distribution of distances for all the SSL embedding spaces, we
can visualize them through a heatmap. Figure 4.4 shows the distance matrix for WavLM’s
embedding space, where the diagonal entries represent the intra-caller distances and the
off-diagonal correspond to the inter-caller distances. In an ideal scenario, one would expect
the intra-class distances between distributions to be smaller than the inter-class ones, which
is not entirely the case in our results. Nevertheless, for callers with a larger amount of available
data, we can observe good discrimination when compared to callers with a lower amount of
data, as in the case of Caller 1 and Caller 3 vs. Caller 8. We observe that the distances exhibit
similar patterns for all other SSL embeddings, which suggests these embeddings provide
similar information for the caller discrimination task. Taken together, the analysis suggests
that the SSL embeddings do carry information for distinguishing marmoset callers to a certain
extent. However, accomplishing this simple with a linear classifier may be a challenging task.
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Figure 4.4 — Distance matrix of callers in WavLM’s embedding space. The off-diagonal values
represent the average inter-caller distances, while the diagonal entries the average intra-caller
distances. Darker regions indicate higher dissimilarity.

4.4 Caller Detection Study

4.4.1 Classifiers

Table 4.2 — Search space to find optimal hyperparameters.

Classifier Hyperparameters Search space
# Estimators [50, 500, 1000, 2000]
RE Max # Features [‘auto), ‘sqrt), ‘log2’]
Criterion [‘gini’, ‘entropy’]
Min samples leaf  [1, 2, 4]
Learning rate [0.1,0.2, 0.5, 1]
AB Algorithms [SAMME, SAMME.R]
Max # Estimators [50, 500, 1000, 2000]
C le[-5, -4, -3,-2,-1,0]
SVM Kernel [RBE Linear, Polynomial]
Gamma [‘scale’, ‘auto’]
C le[-5, -4, -3,-2,-1, 0]
LSVM Max # Iterations 10000
Class weights [‘balanced’, ‘None’]

Based on the insights of our caller discrimination analysis, we proceed to classify the statistics
computed over the caller-groups for the task of caller detection in a 5 fold cross-validation (CV)
framework. We concatenate the mean and variance of the Gaussians into a single functional
vector, and use them as our fixed-length representations for classification.

We use Random Forest (RF), Ada Boost (AB), Support Vector Machines (SVM), and Linear SVM
(LSVM) algorithms to classify the computed functional vectors. The difference between Linear
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SVM and SVM with a linear kernel lies in the former’s utilization of a squared hinge-loss, while
the latter employs a regular hinge-loss.

To determine the most robust classification technique, we employ the grid search methodology
with F1-Macro score as the optimization criterion, integrated into the Scikit-learn toolkit. We
tune the hyperparameters for each fold, across the train and validation sets over the search
space given in Table 4.2.

4.4.2 Evaluation Metrics

To evaluate the effectiveness of our proposed approach for the given task, we present the
area under the curve (AUC) scores, which provide a evaluation of the performance of all
the classifiers in correctly classifying the positive instances against negative. For SVM it is
computed pairwise using a ‘one-vs-one’ methodology, while for the other classifiers it is
calculated in a binary ‘one-vs-rest’ framework, by averaging the AUC scores for each class
against all others.

4.4.3 Results and Discussion

Table 4.3 — Macro AUC scores [%] on Test with 5-fold CV for caller detection task using different
classifiers.

Model AB LSVM RF SVM
APC 71.44 6518 70.89 79.16
VQ-APC 71.60 6558 70.04 78.45
NPC 7261 6627 71.50 77.32
Mockingjay ~ 72.39 64.43 71.75 78.44
TERA 70.34 64.57 68.43 74.03

Mod-CPC 72.62 64.05 69.81 75.96
Wav2Vec2 7441 63.94 70.18 75.85

Hubert 71.71 64.14 70.17 75.64
DistilHubert 70.77 65.11 70.34 76.26
WavLM 73.97 6532 70.74 78.60

Data2Vec 69.81 62.58 68.23 73.04

Average 71.97 64.66 70.19 76.61

Table 4.3 summarizes the performance of the different classifiers on all the embedding spaces.
The results show that SVM significantly outperforms the other classifiers across all embedding
spaces. The decision tree-based ensemble methods, AdaBoost and Random Forest, exhibit
comparable performance for most models, and consistently outperform Linear SVM. This
suggests that the relationship between the features in the embedding space and their labels is
likely to be complex and non-linear, which can be modelled by ensemble methods to some
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degree, but not to the extent of non-linear SVMs.
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Figure 4.5 — a) ROC curves per caller class (CID) for WavLM embeddings using SVM on one fold
of Test. b) Macro average ROC curves of all models on Test using SVM over all folds. Shaded
areas represent + 1 std over the k-folds. c) Model size against performance. Model pre-training
objective denoted as: « Masked prediction. « Autoregressive reconstruction. « Contrastive
Masked reconstruction.

Figure 4.5a) shows the caller classification performance in distinguishing a positive class from
the negative instances using SVM on a single Test fold. We can observe that all callers are
systematically distinguished in this binary framework, including the classes with a low amount
of data (CID 6-8).

Figure 4.5b) visualizes SVM'’s average performance for each embedding space across the
5 folds, with the shaded areas representing + 1 std. The results clearly demonstrate that
the embedding spaces of all models are capable of successfully differentiating Marmoset
callers, indicating that SSL models pre-trained on human speech data can generate salient
representations capable of distinguishing animal vocalizations regardless of the pre-training
criterion.

Figure 4.5c¢) illustrates the relationship between the number of parameters and classification
performance for each embedding space. The plot is divided into four quadrants to highlight
differences in performance. Interestingly, WavLM’s embedding space is found to be more
separable than the other masked prediction models, indicating that its masked speech de-
noising task may be more effective in capturing animal caller identification information than
Hubert’s masked speech modeling. Surprisingly, both auto-regressive reconstruction based
models perform exceptionally well with significantly fewer parameters. These findings suggest
that while all pre-training criteria can yield competitive performance, some may be more
efficient than others, allowing models with simpler architectures and fewer parameters, such
as APC and AQ-APC, to perform comparably to larger models like WavLM. Finally, we observe
that Data2Vec is not as successful as the other masked prediction based models, despite the
same number of pre-training hours, corpus and comparable number of parameters. While it
has shown to outperform the other masked prediction models in human speech, it seems to
clearly learn weaker representations for the task of domain adaptation.
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4.5 Conclusions

This section investigated the applicability of self-supervised representations, pre-trained on
human speech through different approaches, to analyze vocalizations in the bioacoustics
domain. To that end, we conducted and validated two lines of investigation on Marmoset calls
in a caller detection framework.

We first conducted a caller discrimination analysis study on the training data to examine
the linear separability of eleven pre-trained embedding spaces by splitting the training data
into caller-groups, and then calculating the intra-group and inter-group distances through a
multivariate Gaussian distribution framework. The results showed that all spaces exhibited
similar distance patterns, and that distinguishing marmoset callers is possible with a linear
classifier but only to a certain extent.

For our second investigation, we conducted a caller detection study to analyze whether the
embedding spaces of said caller-groups can be systematically distinguished by class. We
trained four classifiers to predict the classes of the caller-groups in 5 fold cross-validation
framework. The results show that we can effectively distinguish all Marmoset callers, including
those with low data, in a binary classification framework. The results also show that non-linear
SVMs are able to most accurately model the non-linear relationship between the features of
the embedding space. Finally, we observe that although all embedding spaces seem effective
at the caller detection task, some learning objectives may be more efficient than others.

In summary, our research demonstrates that self-supervised representations pre-trained on
human speech can effectively classify vocalizations in the bioacoustics domain for tasks such
as Marmoset caller detection, even without fine-tuning. These findings can greatly benefit
bioacoustics researchers looking to distinguish individual identities within a specific species
in their acoustic data. Additionally, we anticipate that further fine-tuning of these models
on relevant bioacoustics downstream tasks can improve performance. Therefore, we plan
to investigate the impact of model size on performance after fine-tuning, and also explore
adapting the embedding spaces for other tasks like call-type classification in our future work.
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Chapter 5. Beyond Caller Identity: Decoding Marmoset Vocal Communication

5.1 Introduction

The advancements in human speech processing have accelerated and impacted research in
non-human communication, such as bioacoustics, i.e. the study of animal sounds. However,
in the existing works, there are three main limitations. First, most of the studies have been
carried out on small datasets. Second, these studies have been conducted on datasets intended
for specific scenarios. Due to a lack of validation, it is unclear whether the methods studied on
one dataset would scale to another. Third, there is limited prior knowledge about what type
of information is relevant for different call analysis tasks. There is a need to overcome these
limitations to advance the development of automatic analyses of marmoset vocalizations.
Chapter 4 addressed this gap through a proof-of-concept study on a single dataset and a
binary caller detection task. The present chapter extends that investigation with a specific
focus on feature representations for automatic marmoset call analyses, where we investigate
three prominent feature representation methods, namely, (a) hand-crafted features, (b) self-
supervised learning-based representations, and (c) end-to-end acoustic modeling, on three
different marmoset call datasets and three different tasks (call type, caller identity, and caller
sex classification).

This chapter is organized as follows. Section 5.2 presents the different datasets, tasks, and
investigated feature representations. Section 5.3 and 5.4 present the studies and analysis of
the results respectively. Finally Section 5.5 concludes the chapter.

5.2 Methodology

5.2.1 Datasets and Tasks

We conduct investigations on three different marmoset datasets, namely the InfantMar-
mosetsVox (IMV), Bosshard, and Wiercka datasets, denoted in this chapter as D;, D,, and
Ds, respectively. D, and D3 contain vocalizations produced by adult individuals, while D,
originates from infant marmosets (Sarkar and Magimai.-Doss, 2023). Consequently, D, is
expected to encompass different call types, likely characterized by higher frequencies com-
pared to those in D, and D3. Furthermore, D, and D3 are gathered from the same colony,
while D, was obtained from a different one. All the datasets consist of audio recordings of
marmosets vocalizations segments, collected and hand-labeled with the start and end time
by experienced researchers. In addition to call-type and caller identity annotations of each
vocalization provided for all three datasets, D; and D also include information about the sex
of the vocalizing individual. For more details regarding the datasets, the reader is referred to 3.

We discard any segments labeled as ‘silence’ and ‘noise’, and only keep the vocalization
segments. The log distribution of the vocalization lengths of the three datasets is presented
in Figure 5.1. We can observe that D; has the shortest median vocalization length at 127 ms,
with D, and D3 at 175 and 1037 ms respectively. Based on the given annotations, we define
multi-class tasks, specifically call-type, caller, and sex classification, henceforth referred to as
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Figure 5.1 — Log distribution of vocalization lengths per dataset. The medians are calculated over
the entirety of each dataset.

CTID, CLID, and SID respectively. Table 5.1 gives the number of vocalization segments S, their
total duration length L, the native sampling rates, as well as the number of classes . for each
task across datasets.

Table 5.1 — S indicates the number of data samples, L the sum of all vocalizations segment
durations (in minutes), and SR the native sampling rate of the given data (kHz). ngg is the
number of classes of each task-dataset permutation.

D S L SR ncrip Bcup  BsID
D; 73K 464 44.1 11 10 -
D, 14K 37 300 7 8 2
Dg 5K 138 125 12 8 2

5.2.2 Feature Representations
We investigate the following feature representations:

1) Hand-crafted features: Highly Comparable Time-Series Analysis (HCTSA) is an interpretable
signal processing-based framework that has been demonstrated to be useful for diverse
time series application domains (Fulcher, Little, and Jones, 2013). In this framework, a set
of 7700 features are extracted by characterizing the signal by different time series analysis
methods, such as, linear correlation, modeling fitting (e.g., autoregressive moving average
analysis, GARCH), wavelet analysis, extraction of information theoretic measures, which
then is combined with feature selection to build statistical models for the end task. In the
literature, these features have been investigated for behavioural birdsong discrimination (Paul
etal., 2021), automated acoustic monitoring of ecosystems (Sethi, 2020), as well as marmoset
caller identification (Phaniraj et al., 2023). One of the challenges of HCTSA approach is
computational complexity and involves an evaluation of many similar features. In a recent
work, CAnonical Time-series CHaracteristics (Catch22) features, a subset of the HCTSA feature
set has been proposed which exhibit a strong performance across 93 real-world time-series
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classification problems, but are also minimally redundant (Lubba et al., 2019). In this work,
we investigate the Catch22 features, denoted as C22.

2) Pre-trained self-supervised learning (SSL) based features: Inspired from the recent study
presented in (Sarkar and Magimai.-Doss, 2023), we investigate the use of feature representa-
tions extracted from pre-trained SSL neural networks trained on human speech for marmoset
call analysis. We extend the investigations from caller detection to call type, caller ID and sex
classification. Furthermore, contrary to the previous work (Sarkar and Magimai.-Doss, 2023),
which focused only on the last transformer layer representation, in this work we investigate
representations obtained from all the transformer layers to gain insight which level of layer
representations are informative for marmoset call analysis.

3) End-to-end acoustic modeling: With advances in deep learning, acoustic modeling ap-
proaches have emerged in speech and audio processing where raw signal can be modeled
to learn task-dependent information from the signal in an end-to-manner with minimum
prior knowledge (Palaz, Collobert, and Magimai-Doss, 2013; Trigeorgis et al., 2016; Zazo et
al., 2016; Muckenhirn, Magimai.-Doss, and Marcel, 2018). Such approaches hold potential
for advancing marmoset call analysis, as they could help not only in addressing the lack of
reliable task-dependent prior knowledge challenge, but also in gaining insight into the task
relevant acoustic information learned by such trained networks through analysis (Mucken-
hirn, Magimai.-Doss, and Marcel, 2018; Muckenhirn et al., 2019; Palaz, Magimai.-Doss, and
Collobert, 2019). The insight gained could then be further validated through linguistic studies.
Motivated by these aspects, we investigate this approach.

A sub-challenge that arises when analyzing marmoset calls is the range of frequency informa-
tion to be modeled. More precisely, the fundamental frequencies (typically corresponding to
the peak frequency) of adult marmoset vocalisations span a range of 6-13 kHz, depending on
the call-type (J. A. Agamaite et al., 2015). However, as can be seen in Table 5.1, datasets are
collected at varying sampling frequencies. Furthermore, the SSL neural networks are typically
pre-trained on speech signal of 8 kHz bandwidth (i.e., 16 kHz sampling frequency). As part
of the investigation, we thus also study the impact of sampling rate (SR) on marmoset call
analysis tasks.

5.3 Experimental Study

5.3.1 Systems

For each task, we divided all datasets into training, validation, and test sets, named Train, Val,
and Test respectively, following a 70:20:10 split ratio, in order to train models on a sufficiently
large number of samples, while ensuring sufficient data points for model evaluation and
validation. Train is used to train the models, Val to tune any hyperparameters, and Test to
evaluate the trained models on unseen data. We then developed the following systems for
each task on each dataset to investigate the aforementioned feature representations:
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1) We used pycatch22 to extract a feature vector x € R for each utterance, where D = 24,
and feed it to a simple, non-linear multilayer perceptron (MLP). We implement three blocks of
[Linear, LayerNorm, ReLU] layers, with 128, 64, and 32 number of hidden units respectively,
followed by a final linear layer to obtain the posterior probabilities. The classifier is trained for
30 epochs, using a batch size 16 and learning rate n = 1e — 3.

2) As it is challenging to investigate all the different types of pre-trained SSL feature repre-
sentations across all tasks and datasets, we simply chose WavLM (S. Chen et al., 2022), as it
was found to yield strong performance on the task of marmoset caller detection (Sarkar and
Magimai.-Doss, 2023), been found to scale well to different human speech processing tasks in
the SUPERB challenge (S.-w. Yang et al., 2021). For each layer, we extracted frame-by-frame
variable-length feature representations x € RV*P, where D = 768 and N the variable number
of frames (contingent on the vocalization length). We then converted these embeddings into
utterance-level fixed-length representations fy, € R*2D (denoted as WLM), by computing
and concatenating the first and second order statistics across the frame axis on the extracted
features. An MLP of same three layer architecture as C22 is then trained with the fixed length
feature as input.

3) We trained a convolutional neural network (CNN) based end-to-end acoustic modeling
system (denoted as E2E) that takes a raw waveform as input and classifies to the output
classes. Following the literature in speech processing (Dubagunta, Vlasenko, and Magimai.-
Doss, 2019; Nallanthighal et al., 2021; Purohit et al., 2023), the E2E system consists of four
convolution layers followed by an adaptive pooling layer and two hidden layers. The E2E
system is optimized with a cross-entropy cost function with an early stopping criteria.

Table 5.2 — CNN model parameters. ny denotes the number of filters, ny, the the number of
hidden units, and o the activation function.

Layer kW dW ng/ny, Padding o

Convl kW dw 128 - ReLU
Conv2 10 5 256 - ReLU
Conv 3 4 2 512 2 ReLU
Conv 4 3 1 512 1 ReLU
Adapt - - - - -

FC1 - - 512 - ReLU
FC2 - - 256 - RelLU
FC3 - - ne - -

Table 5.2 presents the architecture of the E2E system. The first convolution layer kernel width
kW and shift dW was chosen based on the sampling frequency. More precisely, based on
the understanding gained from speech studies, we chose those hyper-parameters to strike
a balance between the length of the convolution filter and enough pitch cycles being mod-
eled (Muckenhirn, Magimai.-Doss, and Marcel, 2018). For 44.1 and 60 kHz sampling frequency,
we chose kW =1 ms and dW = 0.05 ms, respectively. As marmoset calls have fundamental
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frequency around 5 kHz and above (J. A. Agamaite et al., 2015), 1 ms signal would be expected
to contain around 10 pitch cycles or more. However, for 16 kHz sampling frequency, 1 ms
would contain only 16 samples, i.e. at the most 1-2 sample(s) representing each pitch cycle.
This may not hinder capturing the pitch frequency information in the marmoset call well. So,
for 16 kHz we set kW = 10 ms and d W = 0.5 ms. The training batch size 16 and learning rate
0f 0.001, same as the MLP classifier for C22 and WLM. The optimization configuration simply
consisted of Adam and a dynamic learning rate scheduler which reduces the learning rate n
when the selected optimization criterion, in this case Val UAR, shows no improvement after
10 epochs.

In the case of C22, we developed systems at native sampling frequency and downsampled
acoustic signals: 16 kHz for D;, 60 and 16 kHz for D», and 60 and 16 kHz for Ds. In the case
of WLM, we developed systems with signals downsampled to required pre-training sampling
rate of 16 kHz. For E2E system, D, and Dj signals were downsampled to 60 and 16 kHz. To
evaluate the systems we used Unweighted Average Recall (UAR) as the metric to account for
any class imbalance.

5.3.2 Results

Table 5.3 shows the performances of systems based on different feature representations. For
the sake of clarity, only the best layer and worst layer performances are reported for WLM.
Figure 5.2 presents the layer-wise performances for all tasks on all datasets for WLM. Note that
layer 0 corresponds to the output embedding of the CNN encoder, where as the other 12 refer
to the outputs of the transformer encoder layers. The performances are all above chance level,
i.e. 100/ n., for all systems.
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Figure 5.2 — Layer-wise UAR scores for WLM for all tasks and datasets. The layers follow the same
indexing as (S. Chen et al., 2022).

Ignoring the sampling frequency aspect, it can be observed that E2E yields the best perfor-
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5.3 Experimental Study

Table 5.3 — UAR scores on Test on features /. WavLM’s best and worst layer’s score is given. For
each dataset, the best score across features is bolded per task.

D F SR CTID CLID SID

44.1 51.04 47.58 N/A

D €22 e 3770 3454 N/A

60.10 67.47 N/A

D WIM 16 4500 3605  N/A

44 68.32 74.12 N/A

D B2E 16 5303 5994  NJ/A

300 37.68 43.56 66.24
D, (C22 60 3250 35.52 63.38
16  35.65 3532 58.14

56.77 46.05 63.80
32.11 2542 57.98

60 42.03 49.78 62.36

D, E2E 16 37.65 36.21 60.15

125 6432 43.19 62.80
Ds C22 60 65.67 45,50 61.22
16  52.59 3943 57.32

80.38 55.58 74.26
64.62 41.33 59.14

60 6531 47.92 60.73

Dy E2E 16 66.24 31.31 56.59

mances for D;’s CTID and CLID tasks. For D,, WLM vyields best performance for CTID, E2E
for CLID, and C22 for SID. On both D; and D, we can observe that WLM yields competitive
systems, however in the case of D3, WLM'’s third layer representations consistently yield the
best performance across all the tasks (see Figure 5.2), and outperform C22 and E2E. Although
WLM yields competitive performances on D; and Dy, it is difficult to systematically compare
to C22 or E2E as different layers yield best performance for different tasks.

Furthermore, it can be observed that the 16 kHz SR performance is generally inferior across
different datasets and tasks for C22 and E2E. This finding is in line with the understandings in
the literature gained by analysis of different call types which showed that most marmoset call
types extend into frequencies above 8 kHz (J. A. Agamaite et al., 2015). This implies that, with
an 8 kHz bandwidth, certain vital information for specific call types might be lost, rendering it
increasingly challenging, if not impossible, for the classifier to accurately categorize certain
calls. Indeed, it can be observed that C22 systems yield superior performance with the native
SR compared to 16 kHz for all datasets. This emphasizes that higher frequencies are likely to
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contain valuable information. A comparison between C22, WLM and E2E at 16 kHz sampling
frequency demonstrates the potential of SSL based feature representations learned on human
speech.

It is worth noting that a recent, independent study explored representations learned from
other acoustic domains such as general audio, which includes audio event classes such as
environmental sounds, musical instruments, and human and animal vocalizations. They
demonstrated on D; that increasing the pre-training bandwidth of a PANN model (Kong
etal., 2020), pre-trained on the AudioSet dataset with log-mel spectrogram inputs, improved
performance on both CTID and CLID tasks (Sarkar and Magimai.-Doss, 2024). However, the
study didn’t explicitly disentangle whether these improvements resulted from the increased
bandwidth itself, the spectrogram-based inputs, or from the inclusion of some animal vocal-
izations in the pre-training dataset. This distinction still remains an important open question
for future investigations.

5.4 Analysis

5.4.1 Layer-wise Linear Performance Analysis

In Figure 5.2, it can be observed that lower layer representations tend to yield better systems.
To further ascertain that, we carried out layer-wise classification performance of the same
tasks using a simple linear classifier (single layer perceptron). Figure 5.3 shows the results
independently normalized per-task to a [0, 1] range. It can be observed that the lower layers
are much more salient representations for all three tasks across all datasets when compared to
higher layers. A possible explanation is that, because WavLM’s CNN encoder operates directly
on the raw waveform, the early layers capture fundamental acoustic features and can leverage
spectro-temporal variations relevant to tasks such as speaker identification and verification
(S. Chen et al., 2022). Thus, these lower layers inherently generalize better to other acoustic
domains, such as marmoset vocalizations. In contrast, the later layers — shown to perform
well on linguistic tasks, such as speech or phoneme recognition — appear more specialized for
human speech and consequently much less transferable to bioacoustics, resulting in lower
performance. We can also observe that there is no consistent optimal layer for each task type
across the datasets.

5.4.2 Frequency Response of Learnt Convolution Filters

We analyzed the frequency response of the first learned convolution layer filters of E2E sys-
tems by estimating the cumulative frequency response F.,;, as (Palaz, Magimai.-Doss, and
Collobert, 2019):

ng Fk

- , (5.1)
0 1Fel

cum
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Figure 5.3 — Layer-wise UAR scores of WLM features modeled by single layer perceptron. The
scores are normalized independently per task. Darker regions indicate higher performance.

where ny denotes the 128 filters in the first convolution layer and Fy denotes discrete Fourier
transform of filter k over 2048 DFT points.

Figure 5.4 shows the cumulative frequency response for each task per dataset at an SR of 16 kHz,
and 44.1 or 60 kHz. With a 8 kHz bandwidth (left half), it can be observed that the emphasis
is on frequencies 4-5 kHz and above irrespective of the task. As the bandwidth of the signal
is increased (right half), it can be observed that emphasis is also given to higher frequency
regions such as around 10 kHz or above. These observations further corroborate previous
findings that most marmoset calls occupy frequency ranges beyond 8 kHz (J. A. Agamaite et al.,
2015), and also explain the improved performance obtained with higher bandwidth signals.
In addition, we observe that for different tasks the learned filters give emphasis to different
frequency regions. A detailed analysis of the spectral information learned is part of our future
work. Taken together, the analysis indicates that the E2E framework inspired from speech
processing can be scaled to marmoset call analysis.

5.5 Conclusions

This chapter explored different feature representations or learning methods, namely hand-
crafted feature Catch22, SSL feature representation WLM, and end-to-end acoustic modeling
(E2E) for analyzing marmoset calls. Our investigations on three different datasets demonstrate
that end-to-end acoustic modeling and SSL feature representations yield better systems than
handcrafted Catch-22 features for call-type classification and caller identification, while also
achieving comparable performances for sex identification at a common sampling rate. As a
by-product, our studies demonstrated that (a) the utility of pre-trained SSL models on human
speech can be extended to call-type and sex, besides caller discrimination and (b) end-to-end
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Figure 5.4 — Cumulative frequency response per task on all datasets. Sampling rate: 16 kHz (left),
and 44.1 or 60 kHz (right).

acoustic modeling methods developed for speech processing can be scaled for marmoset call
analysis. Our study raises a few pertinent questions such as: (a) with limited signal bandwidth
how are SSL features informative about marmoset calls? (b) what kind of task specific spectral
information is learned by the E2E systems?, and (c) how to combine the different approaches
for improving marmoset call analysis? Furthermore, in this work we only investigated feature
representations that directly modeled the raw input waveform. However, recent bioacoustic
studies on bats, birds, and rodents have leveraged spectrogram-based methods (Goffinet et al.,
2021; Ruff et al., 2020; K. R. Coffey, Marx, and Neumaier, 2019; N. Gu et al., 2024). Whether such
approaches can offer distinct advantages over the waveform-based methods for marmoset
vocal communication analysis remains to be determined. Our future work will investigate
these questions.

46



Bandwidth Limitation in Speech and
Audio SSL Models

Chapter 6
(RQ2 & RQ3)

Chapter Schematic Overview

Study

H

A
Call-Similarity
Analysis

B L]

A
Pre-Training Classification Bandwidth
Domain Analysis Analysis Analysis
Publication Note

The material presented in this section is adapted from the following publications:
* E. Sarkar and M. Magimai.-Doss (2024). “On the Utility of Speech and Audio
Foundation Models for Marmoset Call Analysis”. In: 4th International Workshop
on Vocal Interactivity In-and-between Humans, Animals and Robots (VIHAR2024).

Supplementary Material

* Source Code: https://github.com/idiap/speech-utility-bioacoustics.



https://github.com/idiap/speech-utility-bioacoustics

Chapter 6. Bandwidth Limitation in Speech and Audio SSL Models

6.1 Introduction

Chapter 4 and 5 demonstrated that neural representations derived from models pre-trained on
human speech through self-supervised learning (SSL) could distinguish individual marmoset
call-types and caller identities (Sarkar and Magimai.-Doss, 2023; Sarkar et al., 2025). We argued
that SSLs only learn the intrinsic structure of the unlabeled input signal, typically through
a masking-based pre-text training task, to capture essential information independently of
any domain-specific knowledge, such as human speech production, and thus can be cross-
transferred across different acoustic domains, such as bioacoustics. Building on these findings,
this chapter investigates the utility and limitations of such pre-trained SSL models for the
purpose of marmoset call analysis, with a focus on the following key points:

1. Bandwidth: Given that these models are typically pre-trained on human speech with
a bandwidth of 8 kHz, we address their mismatch with the biological vocalization and
auditory range of marmosets, predominantly concentrated in the 5-10 kHz spectral
region (Osmanski et al., 2016), and thus evaluate their capability to accurately represent
marmoset calls. By examining models pre-trained across varying bandwidths, we aim
to evaluate their effectiveness in adequately representing marmoset calls, and seek to
clarify how model bandwidth influences their classification.

2. Pre-training domain: It remains unclear how models pre-trained on human speech
compare to trained on other acoustic domains for accurately capturing marmoset call
characteristics. We examine representations produced by different pre-training sources,
such as human speech and general audio, across supervised and self-supervised learning
frameworks, against a spectral baseline to identify the most suitable pre-training source
for cross-domain bioacoustic signal analysis.

6.2 Methodology

6.2.1 Dataset and Tasks

For our study, we used the InfantMarmosetsVox (IMV) dataset (Sarkar and Magimai.-Doss,
2023), which contains 72,921 labeled marmoset vocalization segments (totaling to 464 min-
utes), sampled at 44.1 kHz, across ten marmoset individuals and contains eleven marmoset
call-types. Table 6.1 presents the data distribution in function of the call-types and callers. For
our experiments, we divide the dataset into a Train, Val, and Test sets, following a random
70:20:10 split. We denote call-type and caller identity multi-class classification as CTID and
CLID respectively.

Figure 6.1 gives the visualizations of all call-types as well the density distribution of the spec-
trums across the entire dataset. Frequencies below 500 Hz are nullified purely for visualization
to eliminate any low-frequency noise. We can observe that information starts at around 7-8
kHz for most calls in this dataset.
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6.2 Methodology

Table 6.1 — InfantMarmosetsVox dataset statistics.

ID Call-type Count CallerID Count
0  Peep (pre-phee) 1283 0 15521
1 Phee 27976 1 8648
2 Twitter 36582 2 13827
3 Trill 1408 3 5838
4  Trillphee 728 4 5654
5 Tsik Tse 686 5 3522
6 Egg 1676 6 4389
7  Pheecry (cry) 23 7 2681
8 TrllTwitter 293 8 6387
9 Pheetwitter 2064 9 6454
10 Peep 202 - -
Total 72921 Total 72921
1600070: Pre-Phee _ 1: Phee o 2:Twitter  3:Trill _4:Trillphee  5:Tsik Tse _  6: Egg _7:PheeCry  8: TrilTwitter 9: Pheetwitter  10: Peep
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Figure 6.1 — Marmoset vocalizations with a 16 kHz bandwidth. Top: Spectrograms of a single
call-type vocalization. Bottom: The mean spectrum for all vocalizations per call-type across the
dataset, normalized. Shaded areas indicate + 1 std from the mean spectrum.

6.2.2 Models and Feature Representations

For our study, we select four distinct frameworks for feature representations F: hand-crafted
(HC) features derived through signal processing techniques, neural representations obtained
via self-supervised learning (SSL), pre-trained on either human speech or general audio, and
features generated through supervised learning (SL) models pre-trained on general audio.
These frameworks are summarized in Table 6.2. We extract the features from these frameworks
by giving the marmoset calls as input.

Hand-crafted: The Highly Comparable Time-Series Analysis (HCTSA) framework, used for
interpreting diverse time series data, extracts 7700 features through signal processing methods,
such as LPC (Fulcher, Little, and Jones, 2013). It has been applied to diverse tasks such as
birdsong discrimination (Paul et al., 2021), ecosystem monitoring (Sethi, 2020), and marmoset
caller identification (Phaniraj et al., 2023). Despite its broad applicability, HCTSA’s computa-
tional demands and feature redundancy are significant limitations. The CAnonical Time-series
CHaracteristics (Catch22/C22), a streamlined subset of HCTSA, provides high performance
with minimal redundancy across numerous classification problems (Lubba et al., 2019). We
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Table 6.2 — # Parameters P and feature dimension D of selected models, pre-trained on AudioSet
(AS) or LibriSpeech (LS).

F Corpus P D Type

C22 (Lubba et al., 2019) - - 24 HC

WavLM (S. Chen et al., 2022) LS 94.38M 1536 SSL

BYOL (Niizumi et al., 2021) AS 5.32M 2048 SSL
PANN (Kong et al., 2020) AS 8.08M 2048 SL

extend this feature set to a final dimension of D = 24 by appending the first and second order
statistics, and use it as our spectral baseline.

SSL pre-trained on human speech: Following the approach in (Sarkar and Magimai.-Doss,
2023), we use feature representations from SSL models trained on human speech, extend-
ing it to both call-type and caller identity classification. We select the WavLM base model,
pre-trained on the 960-hour LibriSpeech dataset, based on its effectiveness in marmoset
call detection as well as its versatility in speech processing tasks as demonstrated in the SU-
PERB challenge (S.-w. Yang et al., 2021). For each layer, feature representations of length 768
are extracted for each frame. Then, they are transformed into fixed-length utterance-level
representations by computing and aggregating first and second order statistics across the
frame-axis, resulting in a final representation of length D = 1536.

SSL pre-trained on general audio: Expanding marmoset call analysis literature, we utilize
embeddings from models pre-trained on the AudioSet (AS) dataset, which includes audio
event classes such as environmental sounds, musical instruments, and human and animal
vocalizations. Specifically, we choose the AudioNTT2020 model from the BYOL-A architecture
(Niizumi et al., 2021), extracting embeddings from its final fully connected layer of length
D =2048. Inputs are processed into log-mel spectrograms, adhering to the spectral parameters
detailed in the original study, i.e. a 8 kHz bandwidth, 64 ms window size, 10 ms hop size, and
64 mel bins spanning from 60 to 7800 Hz.

SL pre-trained on general audio: We further investigate feature extraction from large-scale
networks pre-trained for general audio pattern recognition. The CNN14 model from the
PANN network (Kong et al., 2020) is chosen, with pre-trained weights applied at three different
bandwidths: 4, 8, and 16 kHz. This model employs a balanced sampling strategy across
AudioSet’s sound classes and also processes input vocalizations into spectrograms to extract
log-mel filterbanks. For a bandwidth of 16 kHz, window and hop sizes are set to 1024 and 320
samples, respectively, and proportionally halved for 8 and 4 kHz. The model utilizes 64 mel
bands, spanning from 50 Hz and to the Nyquist frequency. Embeddings of length D = 2048 are
extracted from the linear layer preceding the final classification layer.
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6.3 Call Similarity Analysis

6.3 Call Similarity Analysis

This section presents a pairwise similarity analysis of the selected features on the Train set to
identify any discernible patterns or correlations for given the vocalizations. Specifically, we
investigate how variations in the bandwidth of the pre-trained models affect the similarity
distribution of intra-class embeddings, and examine any distinctions between models pre-
trained on speech against general audio. To compare the features, which are high-dimensional
vectors, we use the cosine distance defined as sim(xy, x2) =1—(x1-x2/ |x11 - |x2 ), bounded in
[0,2]. Two features are identical when their cosine distance is 0, orthogonal at 1, and opposite
at 2. For WavLM, we select the first layer, and only use the first half of the extracted features,
corresponding to the mean values averaged frame-wise.
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Figure 6.2 - Distribution of pairwise cosine distances.

Figure 6.2 presents the overall distribution of pairwise distances. The distributions are over-
lapping, centering around a median distance of 1 for all representations, suggesting a lack
of clear correlation or similarity within the embeddings generated. Figure 6.3 further de-
lineates the distributions into distance matrices for each feature set, where diagonal and
off-diagonal entries correspond to intra-class and inter-class distances respectively. In an
ideal scenario, embeddings from the same call-type or caller would exhibit closer distances,
where as embeddings from different classes would have a higher dissimilarity.

We can observe that the models pre-trained on general audio datasets (BYOL and PANN)
yield more distinct peaks and diagonals, on figures 6.2 and 6.3 respectively, compared to
those pre-trained on human speech (WavLM) or the handcrafted baseline (Catch22). This
distinction is more pronounced for call-types than for caller identification. This is expected,
given that the call-types are spread across caller classes (a caller produces different calls, while
a call can come from any caller). Although these patterns indicate some level of class-specific
clustering, the distribution of distances largely show that the features are highly orthogonal.
The similarity analysis thus indicates minimal feature correlation, and suggests that classifying
these vocalizations with a simple linear classifier would be challenging, as there is no clear
linear separability between the classes.
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PANN, 4 kHz PANN, 8 kHz PANN, 16 kHz BYOL, 8 kHz

CTID

CLID

Figure 6.3 — Pairwise mean cosine distances matrices for features F at different bandwidths
for call-types (CTID) and callers (CLID). Diagonal entries represent intra-class distances, and
off-diagonal the inter-class. Darker regions indicate higher similarity.

6.4 Classification Analysis

Based on the insights of our similarity analysis, we aim to evaluate the saliency of the extracted
representations, and proceed to classify them using a same non-linear MLP as in Chapter 4, for
the multi-class classification tasks. We implement three blocks of [Linear, LayerNorm, ReLU]
layers, with 128, 64, and 32 number of hidden units respectively, followed by a final linear
layer to obtain the posterior probabilities. To evaluate the performance we used Unweighted
Average Recall (UAR) as the metric to account for any class imbalance. To obtain robust
results, we employ the grid search methodology with Val UAR score as the optimization
criterion. We train the classifier for 30 epochs with cross-entropy loss, and search for the
optimal hyperparameters values of ) and batch-size across 21° and [1e-3, 1e-4] respectively
for each feature-task permutation on Train and Val. The optimization consists of Adam and a
n-scheduler of factor 0.1 and patience of 10 epochs. Lastly, for WavLM, we classify each of the
encoder layers [0-13] to identify the optimal layer.

Figure 6.4 presents the layer-wise scores for WavLM, normalized per task to a [0, 1] range. We
can observe that the lower layers are clearly much more salient representations for both tasks
compared to higher layers. Based on these results, we use the best individual WavLM layers

1.0
II:OS

-0.0

for our two tasks.

CLID CTID

Layer

Figure 6.4 — Layer-wise UAR scores of WavLM features, normalized per task. Darker regions
indicate a higher performance. Layer 0 corresponds to the output of the CNN encoder.

Table 6.3a) summarizes the classification results of the different feature sets at an 8 kHz
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6.4 Classification Analysis

bandwidth (BW). Random performance is given as 100 over the number of classes. Notably,
BYOL features outperform the other features, for both CTID and CLID, despite having fewer
parameters than WavLM and PANN, while C22 proves to be the overall weakest representation.
WavLM shows the highest difference in performance across tasks. Meanwhile, Table 6.3b)
highlights the impact of pre-training bandwidth for salient representations on PANN features.
The results clearly show that the bandwidth size correlates directly with the performance,
increasing monotonically. Particularly, PANN features at 16 kHz achieve the highest perfor-
mance across all features and BWs for CTID. BYOL embeddings at 8 kHz notably outperform
PANN at 16 kHz for CLID. The best scores for both tasks are also closely matched in value.

Table 6.3 - UAR scores [%] on Test for pre-trained features /. WavLM’s best layer’s score is given.

Section F BW CTID CLID

Random - 9.09 10
C22 8 4196 35.62
(a) WavLM 8 59.99 67.47
BYOL 8 63.64 68.30
PANN 8 58.54 56.02
PANN 4  46.27 41.10
(b) PANN 8 58.54 56.02

PANN 16 69.09 65.39

PANN, 4 kHz PANN, 8 kHz PANN, 16 kHz BYOL, 8 kHz C22, 8 kHz WavlLM, 8 kHz
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Figure 6.5 — Normalized confusion matrices with row indices representing true class labels. Darker
diagonals signify higher performance.

Figure 6.5 shows the classifier’s performance through confusion matrices. We can again clearly
observe the monotonic improvement in CTID classification performance for PANN features
as the bandwidth increases. We also notice a prevalent trend of false positives for call-type
ID 2 (Twitter) across all feature sets, especially against IDs 0, 8, and 10, attributable to its
high occurrence in the dataset and broad spectral range (Pistorio, Vintch, and X. Wang, 2006;
J. Agamaite et al., 2015). The CLID results contain distinctly fewer misclassifications, which
aligns with expectations since the call-types are spread among the different callers classes.
The exception is C22, which yields the weakest performance. Caller classes with higher data
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volumes (IDs 0 and 2) perform better compared to the others. Finally, a clear improvement in
performance correlated with bandwidth is seen for PANN features, as with CTID.

6.5 Conclusions

This chapter investigated the utility and limitations of foundations models, pre-trained on
human speech or general audio. To that end, we conducted and validated two studies across
two lines of investigation.

First we conducted a call similarity analysis, which revealed that the features extracted from
these models lacked linear separability within or across classes. Then, we conducted a clas-
sification study which demonstrated that a non-linear classifier can still achieve substantial
performance, and highlighted that a larger bandwidth directly correlates with improved perfor-
mance. Classification of call-types also appeared to be more sensitive to bandwidth changes
than caller identities. Additionally, the pre-training domain of speech and general audio
showed comparable performances, with a distinct improvement over handcrafted features.
Finally, we obtained close best performance for both call-type and caller classification tasks.

In conclusion, our findings underscore the potential of leveraging pre-trained SSL models
for bioacoustic signals, particularly when the model’s bandwidth aligns with the biological
auditory and vocal range of the studied species. Future collaborative work with biologists and
linguistics researchers could explore the biological implications of these results, especially in
understanding the evolutionary aspects of marmoset vocal behaviour and their perceptual
processing, to bridge the gap between computational models and biological insights in non-
human vocal communication research.
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Chapter 7. Comparing Human and Non-Human Transference in SSL Models

7.1 Introduction

Bioacoustics plays a crucial role in ecological and evolutionary research, providing insights
into animal communication, biodiversity, and the origins of language. However, despite its
significance, working with bioacoustic data presents several challenges: the data is often scarce,
difficult to collect, noisy, and expensive to annotate. In recent years, advances in machine
learning have made substantial progress in addressing these challenges (Stowell, 2022b).
Notably, modern pre-trained deep learning foundation models have demonstrated impressive
transferability to bioacoustic tasks, significantly advancing the field (Hagiwara et al., 2023b;
Ghani et al., 2023; Dufourq et al., 2022; Heggan et al., 2024; Moummad, Farrugia, and Serizel,
2024). As demonstrated in Chapter 4, 5, 6, self-supervised learning (SSL) models pre-trained
on human speech, in particular, have shown remarkable success in tackling various bioacoustic
tasks, such as animal call-type classification (Sarkar and Magimai.-Doss, 2024; Mahmoud
et al., 2024; Abzaliev, Perez-Espinosa, and Mihalcea, 2024; Heer Kloots and Knornschild,
2024; Shi, Itoyama, and Nakadail, 2024), caller identification (Sarkar and Magimai.-Doss,
2023; Cauzinille et al., 2024; Knight et al., 2024), and species recognition (Hagiwara, 2023a).
These models leverage large volumes of unlabeled data, prevalent in bioacoustics, by creating
surrogate labels based on the intrinsic structure of the audio data, and then solving pre-text
tasks designed to learn salient representations (A. Mohamed et al., 2022). Given the domain-
agnostic nature of these pre-training tasks, SSL models have been effective in transferring
from speech to bioacoustics without the need for domain-specific fine-tuning. Essentially,
SSLs serve as powerful, general-purpose feature extractors for a wide range of downstream
tasks.

Building on these developments, this chapter explores the following two points, aimed at
analyzing SSLs for bioacoustics:

1. SSL Pre-training Domain: While SSL models pre-trained on human speech have shown
strong transferability to bioacoustic tasks, recent research has explored pre-training on
bioacoustic data itself, both in supervised and self-supervised frameworks (Kahl et al.,
2021; Denton, 2023; Hagiwara, 2023a). The motivation behind pre-training on animal
data is that these models may better capture species-specific vocal patterns and other
properties unique to animal sounds. However, given that SSL pre-training is designed to
learn general, domain-agnostic features, it is not yet clear whether pre-training directly
on bioacoustics actually provides any significant advantage over SSLs pre-trained on
human speech. Therefore, in this study, we systematically compare SSL models pre-
trained on human speech against those on animal vocalizations, and evaluate their
performance for bioacoustics processing across various datasets and tasks.

2. Fine-tuning on Human Speech: SSL representations have demonstrated strong perfor-
mance on bioacoustic tasks without requiring fine-tuning, indicating their extracted la-
tent representations can capture acoustically rich information capable of distinguishing
animal call-types and caller identities. However, fine-tuning in a supervised framework
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often forces the model to learn novel and more specialized patterns, such as phonetic
distinctions and temporal structures, typically leading to further performance gains. As
both human speech and animal calls encode structured vocal and linguistic information
for communication, SSL models fine-tuned on speech recognition (ASR) may provide an
additional inductive bias, enhancing the model’s ability to recognize complex features
in bioacoustic data. Therefore, we seek to explore whether fine-tuning pre-trained SSLs
on human speech tasks, such as ASR, can further improve these models’ capability to
process animal vocalizations by capturing the subtle spectro-temporal characteristics
present in animal calls, which may otherwise remain underrepresented in general SSL
pre-training.

The rest of the chapter is organized as follows: Section 7.2 provides the experimental setup
for the studies in this chapter, Section 7.3 presents and thoroughly analyzes the experiments’
comparative results. Finally, Section 5.5 concludes the chapter.

7.2 Experimental Setup

7.2.1 Datasets, Tasks, and Protocols

We conducted the experiments for our studies on the three distinct bioacoustic datasets,
summarized in Table 7.1. Figure 7.1 also presents a log distribution of their vocalization
lengths.

Table 7.1 - L denotes the length [minutes], n, the number of classes, SR the sampling rate [kHz], u
the median length [ms], o the std.

Dataset # Samples L SR n J7) o
Watkins 1,697 295 - 32 1701 71245
MV 72,920 464 44.1 11 127 375
Abzaliev 8,034 137 48 14 655 1313

Watkins (Sayigh et al., 2017): contains the recordings of different marine mammals, such as
specific dolphins, whales, and seals. We chose Watkins for its multi-species vocalizations, rich
acoustic variety, and high variance in segment lengths (Figure 7.1). It has been commonly
used for bioacoustic benchmarking, particularly for evaluating modern deep learning models
(Hagiwara, 2023a; Hagiwara et al., 2023b). We chose the ‘best of’ cut of the original dataset,
a selected subset from the original 15,000 samples in total, deemed to be of higher sound
quality and to contain less noise. The final dataset contains 1697 vocalization segments from
32 different species, totaling to 295 minutes, with a median length of 1701s. The sampling rate
(SR) varies according to the recorded species.

InfantMarmosetsVox (IMV) (Sarkar and Magimai.-Doss, 2023): is an audio dataset of Callithrix
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Jjacchus, a highly vocal new world primate. Marmosets were chosen for their complex social
system, which allows them to encode vital information in their calls, such as identity, group
affiliation, and dialect. They serve as surrogate models to understand the evolutionary origins
of human vocal communication for neuro-biologists. The dataset consists of 72,920 segments
representing 11 different call-types over 464 minutes. It was recorded from five pairs of infant
marmoset twins, each recorded individually in sound-proofed rooms at 44.1 kHz SR, without
communication with other marmoset pairs or the experimenters. The audio recordings were
manually labeled by an experienced researcher. Although a large dataset by bioacoustics
standards, each segment is predominantly short, with a median length of 127 ms. The spectral
range of the calls is mostly centered around 7-8 kHz, although there is some information
present above 16 kHz (Sarkar and Magimai.-Doss, 2024).

Abzaliev (Abzaliev, Perez-Espinosa, and Mihalcea, 2024): is a novel dog dataset (here referred
to by the first author’s name) consisting of 8,034 vocalizations from the v2017 Mescalina
Bark ID dataset (Pérez-Espinosa et al., 2018). It contains 14 different call-types, ranging from
normal, aggressive, fearful, and playful barks at strangers (IDs 0-3), to vocalizations related to
owner interaction (4-5) and non-stranger/non-play sounds (6). It also contains positive or
negative whines (7-8) and growls (9-10), barks associated with sadness or anxiety (11), and
excitement upon the owner’s arrival home (12). The recordings originate from various dog
breeds, including Chihuahuas, French Poodles, and Schnauzers. The data was recorded at
48 kHz SR from a microphone, and followed a protocol designed and validated by experts in
animal behavior. The dog vocalizations were induced by exposing the dogs to different types
of external stimuli, with the participation of the owner and/or experimenter. We discard all
the segments labeled as non-dog sounds, such as TV, cars, and appliances.

For our experiments, we divide the datasets into a Train, Val, and Test sets, following a random
70:20:10 split protocol.

T |
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Figure 7.1 — Log distribution of vocalization lengths per dataset. The medians are calculated over
the entirety of each dataset.
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7.2.2 Models and Feature Representations

For our experiments, we select four different models to obtain our various feature representa-
tions F. These consist of neural representations extracted through pre-trained (PT) models
on animal vocalizations or human speech in a self-supervised learning framework, as well as
their counterparts fine-tuned (PT+FT) in a supervised approach. The different features and
their various properties are tabulated in Table 7.2.

Table 7.2 — # Parameters P [M] and feature dimension D of selected models. LS denotes Lib-
riSpeech, AS represents AudioSet, and VVGS is VGGSound.

F Corpus p D TL Type
(Hagiwara, 2023a) AVES-Bio FSD, AS,VWVGS 94.68 768 12 PT
(W.-N. Hsu et al.,, 2021) HUuBERT LS 960 9468 768 12 PT
(Baevski et al., 2020) W2V2 LS 960 95.04 768 12 PT
(Baevski et al., 2020) W2V2-100h LS 960 95.04 768 12 PT+FT
(Baevski et al., 2020) W2V2-960h LS 960 95.04 768 12 PT+FT
(S. Chen et al., 2022) WLM LS 960 9438 768 12 PT

(S. Chen et al., 2022) WLM-100h LS 960 94.38 768 12 PT+FT

SSL pre-trained on animal vocalizations: We look at the AVES models family (Hagiwara,
2023a), which are essentially the same as HuBERT models, but pre-trained on bioacoustics
data instead of human speech. We select them based on their effectiveness on numerous bioa-
coustic classification and detection tasks, as well as the extensive benchmarking. Although this
model performs well compared to traditional classifiers (Hagiwara, 2023a), its performance
has not been directly compared to a regular HuBERT model pre-trained on speech. The AVES
set are pre-trained on combinations of publicly available audio datasets, namely FSD50K
(Fonseca et al., 2021), AudioSet (Gemmeke et al., 2017), and VGGSound (H. Chen et al., 2020),
instead of human speech. Specifically, we chose the Bio model, which was pre-trained on a
masked-prediction task on a total of 142K audio segments (360 hours) of the animal label in
the AudioSet ontology (ID: /m/0jbk) and VGGSound class group. It’s architecture is based on
HuBERT'’s base model, and contains 12 encoder transformer layers (TL).

SSL pre-trained on human speech: In order to directly compare our performance against
AVES-Bio, we select the HUBERT base model, pre-trained on a masked-prediction task. In
addition, we also look at the base WavLM, denoted as WLM, based on its demonstrated
effectiveness in animal call and caller classification (Sarkar and Magimai.-Doss, 2023; Sarkar
and Magimai.-Doss, 2024; Sarkar et al., 2025), as well as its versatility in speech processing
tasks as benchmarked on the SUPERB challenge (S.-w. Yang et al., 2021). Finally, we also use
the base Wav2Vec2 model, denoted as W2V2, pre-trained on a constrastive task. All three
models were pre-trained on the 960-hour Librispeech dataset.

SSL pre-trained and fine-tuned on human speech: For our second study, we assess the impact
of fine-tuning on models pre-trained on human speech for bioacoustic tasks. To that end, we
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use WLM fine-tuned on 100 hours of Librispeech, and W2V2 fine-tuned on both 100 and 960
hours of Librispeech. All 3 models are fine-tuned on a ASR task'.

Fusion: We also compute a simple fusion representation as comparison to the other features.
For each vocalization segment, we simply compute the mean across the posterior probabilities
of all the other features, and then take its argmax.

RaVY SSL F(s) Extract.ed (u. 0) Functionals
Audio  — Embeddings
. F, f
Signal s X
o & O
AVES HuBERT |...|:|:|:|
(u. 0)
WavlLM Wav2Vec2 RZD
RNXD

Figure 7.2 — Feature representation extraction pipeline.

The general pipeline for obtaining a feature vector for a given vocalization segment is illus-
trated in Figure 7.2. We obtain the features from these each of the SSL models F, by first giving
them the animal vocalizations s as inputs resampled at 16 kHz. We extract the variable-length
embeddings x € RV*P output for each frame. Then, we transform them into fixed-length
vocalization-level representations by computing and aggregating first and second order statis-
tics across the temporal axis, resulting in a final feature functional representation f € R?>". For
our work, we extract the embeddings of the CNN and all encoder transformer layers (TL) of F,
since we are interested in investigating the features at a layer level.

7.3 Experiments and Analysis

This section looks at the classification performance of the extracted feature representations. In
order to compare and evaluate the saliency of the different features, we use same classifier as
the Chapter 5 and 6: a simple, non-linear MLPB, composed of three blocks of [Linear, LayerNorm,
ReLU] layers, with 128, 64, and 32 number of hidden units respectively, followed by a final
linear layer.

We train the classifier for 30 epochs using cross-entropy loss, and employ a early-stopping
criterion, where training is stopped if no improvement is observed on the Val set for 10
consecutive epochs. The optimization consists of Adam, with a 7-scheduler of factor 0.1 and

Al fine-tuned models are obtained from Huggingface, namely from the facebook, microsoft, and
patrickvonplaten repositories.
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7.3 Experiments and Analysis

patience of 10 epochs. We evaluate the performance through Unweighted Average Recall
(UAR) as the metric to account for any class imbalance.

7.3.1 Pre-Training Domain Analysis

In this sub-section, we analyze the impact of pre-training domain by comparing AVES against
HuBERT. Figure 7.3 shows that HuBERT outperforms AVES in the initial and final layers for
IMV. Both models show that the initial transformer layers are more important for this task,
indicating that this trend is not specific to speech-based pre-training. The loss of substantial
spectral information in these Marmoset calls when down-sampled to 16 kHz likely affects the
overall performance (Sarkar and Magimai.-Doss, 2024). For Watkins, we see that AVES’s initial
layers are not as salient as later ones, where as HuBERT’s middle layers are conversely the
least useful. In the Abzaliev dataset, AVES performs better overall, with both the initial and
later layers contributing comparably. HuBERT, on the other hand, does not scale well, and
follows the same downwards trend as IMV. Overall, the results indicate that pre-training on
bioacoustic data can provide marginal improvements in some datasets.
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Figure 7.3 — Layer-wise UAR [%] performance of AVES (¢) against HuBERT (e).

7.3.2 Fine-Tuning Analysis

Fine-tuning yields mixed effects across both models and datasets, as shown in Figure 7.4.
In several cases, we observe that fine-tuned models do not consistently outperform their
base counterparts, particularly in W2V2-960h, with performance gains being marginal at best.
Notably, fine-tuning on more speech data, such as the 960-hour W2V2, sometimes leads to
a decline in performance in later layers, as seen on IMV and Abzaliev. This suggests that
fine-tuning on speech may push models to learn task-specific features that don’t generalize as
well to certain bioacoustic tasks.

Interestingly, for non-fine-tuned models, earlier layers often capture enough general acoustic
features to perform adequately. However, for fine-tuned models, selecting the optimal layer
becomes more important, as different layers may capture more specialized representations
that could benefit certain tasks. This points to the fact that fine-tuning creates more task-
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Figure 7.4 - UAR of W2V2 (A) and WLM (M) against their fine-tuned versions.

specific representations, making careful layer selection more necessary for specific bioacoustic
tasks.

7.3.3 Comparative Analysis

Finally, we look at the general classification performance. Table 7.3 tabulates the result of the
layers yielding the highest scores from the different features.

Table 7.3 — UAR scores [%] on the best feature layer, on Test. Best performance is bolded, second
best is underlined.

Type F IMV Watkins Abzaliev
AVES 62.54 94.95 54.23

PT HuBERT 64.35 94.18 47.96
WavLM 58.98 94.78 43.97

W2v2 62.40 94.25 48.95
WavLM-100h  60.93 93.93 47.90

PT+FT W2V2-100h 63.44 91.77 4491
W2V2-960h 61.25 91.42 44.36

Fusion 62.48 94.78 48.95

We can observe that the best scores are from the AVES and HuBERT models, both of which
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consist of the same architecture, pre-text task, and loss function. HuBERT and AVES yield
very comparable performances for both IMV and Watkins, indicating that HuBERTs represen-
tations are robust for call-type classification tasks across different species. AVES achieves a
higher score on the Watkins dataset, suggesting that for this specific task, pre-training on bioa-
coustic data yields a small but notable improvement for species classification. Additionally,
we can clearly observe that all the best scores are from the PT category, as well as the second
best scores with the marginal exception W2V2-100h on the IMV dataset. This demonstrates
that further fine-tuning pre-trained speech models on an ASR task does not consistently bring
us any advantage over the pre-trained alone for bioacoustics classification tasks. It suggests
that the pre-trained representations may already be optimized, and fine-tuning might not
always yield significant benefits. Lastly, we observe that a fusion of all features over their best
layers doesn’t yield a more salient representation than the best performing model, although it
can outperform some of the others.
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Figure 7.5 — Confusion matrices of the best feature layers’ fusion.

Figure 7.5 shows the classifier’s performance of the fusion features through confusion matrices.
We can observe a good classification alignment for the three datasets. For IMV, there is a
noticeable trend of false positives for call-type ID 2, likely due to its high occurrence in the
dataset, and wide spectral range, causing an overlap of acoustic features with the other classes.
The Watkins dataset is unsurprisingly the easiest to classify, likely because of the clear acoustic
and spectral differences in the various species vocalizations, as well as the high variance in
segment lengths. Class ID 13 only had two samples which results in an empty row. In the
Abzaliev confusion matrix, we observe some confusion between certain call-types, namely the
different barks (IDs 0-5) which may contain overlapping acoustic features. Some classes had
very few samples (ID 6) or were removed during data preprocessing (ID 7), resulting in empty
rows.
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7.4 Conclusions

This chapter presented a comparison of self-supervised learning models pre-trained on hu-
man speech and animal vocalizations for bioacoustic tasks. Through two distinct lines of
investigation, we first examined the impact of pre-training domains by comparing models pre-
trained on human speech and animal vocalizations. The results indicated that pre-training on
bioacoustic data mostly yields comparable performance to pre-training on speech, but can
offer limited advantages in select contexts. In our second line of investigation, we explored
whether fine-tuning pre-trained speech models on ASR could further enhance their ability
to capture structured patterns in animal vocalizations. We found that fine-tuning yielded
inconsistent results, suggesting that the general-purpose representations learned during pre-
training may already be well-suited for bioacoustic tasks, and further fine-tuning on speech
does not consistently provide additional benefits.

In conclusion, our results highlight the utility of pre-trained speech models for bioacoustic
tasks, even without further fine-tuning. Future work could explore attention mechanisms
in SSL models to gain deeper insights into how these models interpret and process specific
features of animal vocalizations.
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Publication Note

The material presented in this section is adapted from the following publications:
e E. Sarkar, A. Mohammadi, and M. Magimai-Doss (July 2025). “Adaptation of
Speech and Bioacoustics Models”. In: Idiap-RR-05-2025.

8.1 Introduction

In Chapter 7, we examined whether fine-tuning models pre-trained on human speech could
improve processing of animal vocalizations, but found no consistent gains using publicly
available models fine-tuned on ASR. In this chapter, we investigate whether fine-tuning
the aforementioned SSL models directly on the downstream bioacoustic data yields better
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performance on the same classification tasks.

Fine-tuning a pre-trained model on a downstream task or domain is the second step of
the typical SSL framework, as explained in Section 2.4.2. However, in standard fine-tuning,
the entire parameter set of the network is updated, which can quickly become exceedingly
computationally expensive or even infeasible. The advent of large foundation models has
lead to the development of a number of parameter efficient fine-tuning (PEFT) techniques for
downstream tasks. The core idea behind PEFT approaches is to only strategically update a
small subset of parameters, while keeping the majority frozen, thereby greatly reducing the
computational cost and tuning time.

To this end, we adopt Low-Rank Adaptation (LoRA) (Hu et al., 2022) for parameter-efficient
fine-tuning (PEFT) and apply it to two architecturally identical models: HuBERT (pre-trained
on human speech) and AVES (pre-trained on bioacoustics). We focus exclusively on the call-
type identification (CTID) task and conduct systematic ablations to understand the adaptation
process. Specifically, we explore which permutation of transformer projection matrices to
optimize, which encoder layers permutations to fine-tune, and whether to freeze or drop
the remaining layers, in order to achieve better performance. Moreover, having observed a
progressive decline in representational quality across deeper layers in the previous chapter,
we examine whether this layer-wise trend changes when models are fine-tuned on domain-
specific data.

The remainder of this chapter is organized as follows. Section 8.2 provides an overview of
parameter efficient fine-tuning and parameter pruning, while Section 8.3 outlines the research
questions and experimental methodology for the different experiments. Finally, Section 8.4
present the results from the various studies, and Section 8.5 concludes the chapter.

8.2 Parameter Efficient Fine-Tuning and Parameter Pruning

The following Section 8.2.1 gives a brief overview of Low-Rank Adaptation (LoRA), a modern
PEFT adaptation technique which has gained a lot of prominence thanks to its simplicity and
effectiveness. We also introduce the notion of parameter pruning in Section 8.2.3.

8.2.1 Low-Rank Adaptation (LoRA)

During training or fine-tuning, a model’s parameters are updated through backpropagation,
as defined in Equation (2.2). Although these weight parameters w are full-rank matrices, they
have been shown to reside in a much lower-dimensional subspace, i.e. to have low ‘intrinsic
dimension’ (Aghajanyan, Gupta, and Zettlemoyer, 2021). Likewise, (Hu et al., 2022) demon-
strated that the fine-tuning updates Aw themselves exhibit a low ‘intrinsic rank’. Consequently,
one can efficiently parameterize these updates by decomposing Aw into the product of two
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Figure 8.1 — Regular fine-tuning compared to LoRA adaptation. x and z are the input and output.

low-rank matrices wp and w4. The concept is illustrated in Figure 8.1 and formalized as:

Wrr = Wpt + Aw (8.1)

= Wwpr+WgR- WA (8.2)

where wy € R and wg € R"™*" for a weight matrix w € R™*"*. Here, wrr and wpr denote
the fine-tuned and pre-trained weights, respectively. We initialize one matrix with random
Gaussian values w4 ~ N(0,02), and the other as a zero matrix wg = 0, ensuring that the
model’s initial output matches the pre-trained model. During the fine-tuning process, both
the pre-trained weights wpr and the new adapters w4 and wp are used to compute the hidden
states z during the forward pass. However, during the backward pass, only the gradients of
low-rank matrices are required to be computed and optimized — the original pre-trained
parameters remain frozen. This selective updating drastically reduces the computational cost
compared to regular ‘full’ fine-tuning.

In practice, there are two additional hyperparameters: a constant scaling factor a and the
rank r < min(m, n). The modified forward pass, where x is the input and z the output, is thus
defined as:

a
Z = WpTX+ —WRW4X, (8.3)
r

Typically LoRA is applied only to the weight matrices in the attention block of transformer-
based models during fine-tuning, while the feed-forward module remains unchanged. This
approach reduces the number of trainable parameters without compromising the integrity
of the pre-trained representations. To the best of our knowledge, LoRA has not yet been
employed to transfer models from human speech processing to the bioacoustics domain.
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8.2.2 LoRA Adapters in Transformers

Having introduced the main principles of Low-Rank Adaptation, we now consider how these
adapters w4 and wp are integrated into the Transformer architecture shared by HuBERT and
AVES. Inserting adapters at appropriate locations allows us to adapt large pre-trained models
with minimal parameter updates, while preserving the bulk of the original weights.

Positional encoder &
Input 7 x 1D-CNNs Linear transformer layers Output

Feature Feature Transformer
. z
Extractor Projector Encoder

Figure 8.2 — Transformer architecture of HuBERT and AVES.

As shown in Figure 8.2, the Transformer model consists of three main modules that transform
raw audio x into context-aware feature representations z:

 Feature extractor: seven 1D convolutional layers of different window lengths and shifts,
alongside GeLU activation functions and LayerNorms. This block operates directly on
the raw waveform, and converts the input audio signal into embeddings of size 512.

¢ Feature projector: a fully-connected layer, preceded by a LayerNorm and followed by a
Dropout. This layer projects the output of the feature extractor embeddings from 512
into 768 dimensions.

* Transformer encoder: the core of the model, operating on 768-dim vectors, and itself
consisting of:

— One positional encoder: convolutional and GeLU layers that inject relative posi-
tion information.

— Multiple Transformer (encoder) layers: each composed of a self-attention block
and a two-layer feed-forward network. Figure 8.3 illustrates one such layer. Note
that the LayerNorm, Dropouts, skip connections, and activations have been omit-
ted for simplicity.

. Self
" Attention
-

Transformer Encoder Layer X L

»
»

Figure 8.3 — Simplified transformer encoder layer.
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Within each Transformer encoder layer, there are multiple candidate weight matrices where
LoRA adapters can be inserted to capture task-specific adjustments. In the diagram:

* The self-attention consists of the keys, queries, values (K, Q, V) matrices, as well as the
output linear layer, often referred to as O, but here denoted as FCO. The self-attention
computation is described in Equation (2.8) and (2.9).

* The feed-forward network consists of two fully-connected layers, henceforth referred to
as FC1 and FC2.

LoRA adapters may be added to any of these projection matrices (Q, K, V, FCO0, FC1, or FC2),
enabling the model to learn low-rank updates at these points while keeping all other param-
eters fixed. By selecting different combinations of adapter placements, one can tailor the
fine-tuning process to balance between parameter efficiency and adaptation flexibility.

8.2.3 Parameter Pruning and Layer Dropping

Large pre-trained speech foundation models can be over-parametrized for downstream tasks.
Prior work in the literature has shown that structured or adaptive parameter pruning can
reduce model size while preserving strong classification performance (Peng et al., 2023).
Rather than individual weights, layer dropping, i.e. removing entire layers, has also been
investigated as a parameter pruning technique. Numerous layer-dropping strategies such
as top-down, bottom-up, and alternating layer removals have been explored in transformer-
based models, achieving up to 40% reduction in model size with only a 2% drop in downstream
accuracy (Sajjad et al., 2023). Although these approaches have proven effective in NLP, their
application to bioacoustics domain and effectiveness in cross-domain adaptation remains
unexplored.

8.3 Research Questions and Experimental Methodology

This section formalizes the central research questions guiding our investigation into adapting
pre-trained speech and bioacoustic models via LoRA, and defines the experimental design
used to answer them.

8.3.1 Encoder Matrix Selection

Based on the possible adapter insertion points identified in Section 8.2.2, we first explore which
combinations of weight matrices within the Transformer layers yield the greatest downstream
classification performance when fine-tuned with LoRA. We also examine whether extending
LoRA fine-tuning beyond the Transformer encoder, specifically to the feature extractor and
feature projector, also leads to further improvements. To that end, we formulate the following
two research questions:
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Q1. Which subset or permutation of transformer projection matrices (K, Q, V, FC0, FC1, FC2)
is most effective for LoRA-based fine-tuning?

To answer this, we compare the following adapter configurations:

¢ [FC1, FC2]: the two-layer feed-forward network only.

[Q, K]: the self-attention query and key projections.

[Q, K, VI: all three self-attention projections.

[Q, K, V, FCO]: self-attention as well as the attention output projection.

[Q, K, V, FC0, FC1, FC2]: all self-attention and feed-forward projections.

We individually fine-tune a pre-trained HuBERT under each of these five different set-
tings on the Train set, and measure UAR on Test, thereby identifying which permutation
delivers the best downstream adaptation.

Q2. Does applying LoRA adapters to the feature extraction and/or feature projection mod-
ules, in addition to the Transformer encoder, improve classification performance?

Although parameter-efficient fine-tuning typically focuses on the Transformer layers
alone, strong acoustic domain shifts, such as moving from human speech to non-
human animal vocalizations, may potentially benefit from adapting earlier, pre-encoder
network components. To investigate this, we compare three configurations:

* Encoder only: LoRA adapters inserted in the Transformer encoder layers only
(baseline). We insert the adapters on the optimal matrix permutation found from

Q1.
* Projector + encoder: adapters applied to both the Transformer encoder and the
feature projection fully-connected layer.

» Extractor + projector + encoder: LoRA adapters are applied to the Transformer
encoder and the feature projection layer, while the feature extractor block is fully
fine-tuned, instead of through LoRA decomposition. This is due to a limitation
in the implementation of the PEFT HuggingFace library, which currently sup-
ports LoRA only on linear modules. However, we keep the feature extractor fully
trainable, such that its convolutional filters can still directly adapt to the specific
characteristics of bioacoustic signals.

We hypothesize that including the feature projector, a simple affine mapping, will yield
additional gains, while adapting the convolutional extractor may have uncertain effects,
given its role in low-level signal processing and the risk of disrupting learned acoustic
filters. Moreover, the impact of full fine-tuning, as opposed to LoRA-based adaptation,
may differ significantly in these components.

By systematically evaluating these configurations on our CTID task with UAR, we will iden-
tify which adapter placement strategy offers the best balance of parameter efficiency and
performance.
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8.3.2 Layer Selection Strategies

Choosing which encoder layers to adapt is an important decision in parameter-efficient fine-
tuning. Rather than fine-tuning all layers, we investigate whether updating only a particular
subset can yield comparable or better performance, and whether there exists a systematic
strategy for selecting these layers. Prior work and previous chapters have shown that initial
layers in speech SSL models work much better than the later layers for bioacoustics tasks. We
therefore ask:

Q3. Which layer selection strategy for the Transformer encoder yields the most effective
performance after fine-tuning ?

(T[] o]
|1|2|3|4|5|6|7|8|9|10|11|12||1|2|3|4|5|6|7|8|9|1o|11|12|

(a) (b)

Figure 8.4 — Layer selection strategies: (a) bottoms-up. (b) top-down. The numbers corresponds
to transformer encoder layers. Each row represents a different layer permutation, eg. 1, 1-2, 1-3,
etc.

To answer this question, we employ two different layer selection strategies, as shown on
Figure 8.4. For each strategy, we compute all permutations:

* Bottoms-up strategy incrementally adapts the encoder from its lowest layer upwards.
In one permutation, we only use the output embeddings of the first layer, then in the
second combination, we use the ones of the second layer, with the input having gone
through the first two layers, and so on till the final permutation where the input traverses
all the layers and we use the output embeddings of the final layer.

For L total encoder layers, denoted as I3, l», ..., [1, we define an independent fine-tuning
configuration for each k€ {1,2,...,L}:

.AkZ{ll,lz,...,lk}, fk={lk+1,...,lL},

where Aj denotes the set of adapted layers with LoRA adapters, and F the set of frozen
layers. We then measure downstream classification performance for each k, thereby
quantifying the incremental contribution of the first k layers to the adaptation process.

Since the later layers typically learn more task-specific information, we hypothesize
that fine-tuning the lower layers could still bring substantial improvements, as these
typically encode more acoustic information.
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* Top-down strategy conversely starts by first adapting the highest-level layer embeddings
only, and progressively includes lower layers. In this case, we define our configurations
as:

A=t pev lgeoseo i), Fr=Al,. D g

where A]_are the layers adapted with LoRA, and F, are frozen. By evaluating classifica-
tion performance for each k, we assess how the inclusion of progressively lower-level
layers impacts adaptation.

In this strategy, it could be argued that starting adaptation with the top layers could
accelerate the domain adaptation and force the model to learn representations more
relevant to the animal-specific vocalizations.

8.3.3 Fine-Tuning Strategies: Probing, Freezing, and Pruning

Rather than simply freezing unselected layers during LoRA adaptation, parameter-pruning
research detailed in Section 8.2.3 suggests that removing those layers from the model entirely
may further improve efficiency without degrading performance. We therefore compare three
distinct adaptation strategies, and formulate our question as:

Q4. Which approach yields the best downstream performance between (a) simple linear
probing, (b) LoRA fine-tuning with layer freezing, and (c) LoRA fine-tuning with layer
pruning ?

The three scenarios are illustrated in Figure 8.5, and explained below:

(a) Linear probing: All encoder layers remain frozen. We simply extract the output embed-
ding of the selected layer(s), apply mean-pooling, and train a single linear classifier on
top. Note that this scenario is essentially identical to the one used in Chapter 7, with the
key difference that we only employ a single linear classifier instead of an MLP. Using the
same classifier across all adaptation scenarios ensures a fair comparison.

(b) LoRA + freezing: LoRA adapters are inserted into the selected layers and fine-tuned,
while all other layers remain frozen and only participate in the forward pass.

(c) LoRA + pruning: Selected layers receive LoRA adapters and are fine-tuned, but all other
layers are removed from the model, and the classifier is applied directly on the output of
the highest adapted layer.

In all scenarios, we apply the LoRA adapters to the optimal matrix permutation found from
Q1. By evaluating each strategy on both HUBERT and AVES, we can determine whether
dropping unused layers offers any advantage over freezing them, and how both compare to a
classic linear-probing baseline. Finally, to assess which strategy performs best, we conduct all
experiments on both the Abzaliev and IMV datasets.
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Figure 8.5 — Three evaluation scenarios of a pre-trained SSL model using a linear classifier. This
example depicts the case where layers 1-6 are selected and used for classification, while any
remaining layers are either ignored, kept frozen, or pruned, depending on the scenario. a) Linear
probing: all layers of the pre-trained model are frozen. The input signal s passes through the
layers 1-6. The output embedding from layer 6 is extracted and given to a linear classifier, which is
trained. The remaining layers are ignored. b) LoRA fine-tuning with freezing: LoRA adapters are
inserted into the selected layers 1-6, which are adapted, while the others 7-12 remain frozen. c)
LoRA fine-tuning with layer pruning: the model is pruned such that only the selected layers 1-6
are retained and then fine-tuned using LoRA, while all the others are removed from the model
entirely. Note that layers 7-12 are functionally identical in scenarios (a) and (c): they are unused in
both cases. We distinguish them visually to emphasize that in (c) they are explicitly removed from
the model, whereas in (a) they are simply ignored. In each case, the output embeddings of the
pre-trained model are mean-pooled over the temporal axis to produce a single functional feature
vector x. In practice, a LayerNorm layer is also implemented before the linear layer for robustness.

8.4 Results and Analysis

8.4.1 Hyperparameter Selection

Given the large number of fine-tuning configurations and model permutations, we performed
a preliminary grid search on HuBERT to identify a single set of LoRA hyperparameters that
could then be kept constant across all subsequent experiments. The search spanned learning
rate n, rank r, scaling a, dropout, weight decay, and number of epochs.

To ensure these settings generalize across different adaptation structures, we ran the search
independently for each of the five matrix permutations defined in Q1, and for each of the
twelve bottoms-up layer selections while keeping the unselected layers frozen. In total, this
amounted to approximately 900 trials on the CTID task. The hyperparamters optimized in the
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grid search are given in Table 8.1.

Table 8.1 — Search space to find optimal hyperparameters.

Hyperparameters Search Space Optimal Value

a [1,2,...60] 3

r (4,8, ..., 64] 60
Dropout [0,0.1,0.2, ..., 1.0] 0.3
n le[-3, -2, -1] le-3
Weight decay le-9-9.67e-2 8e-09
Max. epochs (1, 2,3,4,5] 5

We found that a low learning rate (1073), a high adapter rank (r = 60), and a moderate scaling
factor (@ = 3) produced consistently strong performance, with optimal dropout of 0.3 and
minimal weight decay (8-1077). These settings balance adaptation capacity against overfitting
risk and are used throughout the rest of our studies.

r 0.34
Layers

n

Max epochs
Batch size
Matrices

Dropout

Weight decay

T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Hyperparameter Importance

Figure 8.6 — Hyperparameter importance on HuBERT, as estimated by the fANOVA algorithm.

The hyperparameter importance plot in Figure 8.6 quantifies each parameter’s contribution to
the variation in downstream UAR, as estimated by the fANOVA algorithm (Hutter, Hoos, and
Leyton-Brown, 2014). The results indicate that adapter rank r is by far the most influential
hyperparameter, reflecting the fact that increasing the latent dimensionality of the LoRA
update substantially enhances the model’s adaptation capacity. Next in importance is layer
selection, confirming that the choice of encoder layers that receive adapters does affect the
performance. The learning rate n remains critical, consistent with its central role in gradient-
based optimization, but ranks below rank and layer decisions. The number of epochs and
batch size exhibit moderate impact, suggesting that training duration and mini-batch stability
provide incremental gains once rank, layers, and n are set. The choice of projection matrices,
formulated in Q1, seems to have only a modest effect once the principal LoRA capacity and
layer locations are determined. Finally, LoRA dropout and weight decay show near-zero
importance, implying that explicit regularization is largely unnecessary under LoRA fine-
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tuning for CTID.

8.4.2 Matrix Selection Results (Q1)

40.73

UAR [%]

FC1,FC2 Q.K Q.K\V Q,K,V,FCO Q,K,V,FCO,FC1,FC2
LoRA Matrix Permutation

Figure 8.7 — Best UAR [%] for each LoRA adapter configuration on layers 1-12. Fine-tuning all
matrices yields the best performance.

Figure 8.7 shows the highest UAR score achieved for each of the five different LoRA adapter
matrix configurations defined in Q1. To ensure a fair comparison across matrix combinations,
we fix the selected layers to HUBERT encoder layers 1-12 for all experiments. All results
are obtained on the Abzaliev dataset for the call-type classification (CTID) task. For each
configuration, we report the best UAR achieved across our full hyperparameter sweep. The
results exhibit a clear, monotonic progression:

QK<QKV<QKVFC0 <Q,XKV, EC0, FC1, FC2.

In other words, performance steadily increases as more projection modules are adapted.
Fine-tuning only the query and key projections yields the lowest UAR, with each successive
addition (value, attention output, feedforward layers) leading to higher scores. This progres-
sion highlights that granting the model greater adaptation capacity, by increasing the number
of LoRA-enabled projections, consistently improves downstream accuracy, with the full set of
adapters delivering the best result.

8.4.3 Layer Selection Strategy Results (Q2 & Q3)

Based on the previous results, we fix the matrix permutation to include all the aforementioned
matrices, and now aim to identify which layer selection strategy and permutation yields the
best fine-tuning results.

Figure 8.8 compares the best UAR scores across different layer selection strategies for both
AVES and HuBERT. We observe that in both cases, fine-tuning the feature extraction (FE)
layers severely degrades performance. Fine-tuning the feature projection (FP) alone does not
significantly improve performance relative to other strategies, but it also does not degrade
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Figure 8.8 — Layer selection strategy UAR [%] results: (a) bottoms-up, (b) top-down, (c) FE + FP +
bottoms-up, (d) FP + bottoms-up.

it, suggesting that FP adaptation is optional rather than essential. Furthermore, bottoms-up
and top-down layer selection strategies yield comparable results, generally achieving scores
in the range of 30-40% bracket for all layer permutations. Finally, neither AVES nor HuBERT
consistently outperforms the other across all layer selections. However, HuBERT appears to

perform slightly better in the later layers in the bottoms-up strategy, with or without feature
projection tuning.

8.4.4 Fine-Tuning Strategy Selection (Q4)

In this final research question, we evaluate three paradigms aforementioned in Q4, namely
linear probing, LoRA with layer freezing, and LoRA with layer pruning, applied to the Trans-
former encoder in a bottoms-up layer selection. For fairness, we keep the feature extraction
(FE) and feature projection (FP) modules unchanged, since standalone fine-tuning on these
sub-modules did not yield consistent gains. We run these experiments on both the Abzaliev
and IMV datasets, using AVES and HuBERT feature representations.

Figure 8.9 displays the per-layer UAR performance for each strategy. On the IMV dataset,
LoRA fine-tuning, whether with freezing or pruning, consistently and significantly improves
performance over simple linear probing across nearly all layers when using AVES, and shows
clear gains in the later layers of HUuBERT. By contrast, on the smaller Abzaliev dataset, simple
linear probing almost always exceeds either LoRA performance, suggesting that LoRA tuning
offers limited benefit in low-data scenarios. However, this performance gap on Abzaliev is
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Figure 8.9 — Layer-wise UAR [%] performance of scenarios (a), (b), and (c).

modest compared to the substantial gains that LoRA fine-tuning delivers on the larger IMV
dataset. This suggests that LoRA’s advantages scale with dataset size, whereas in lower-data
scenarios a simple linear probe may be more a reliable choice.

We can also observe that in the case of AVES, both LoRA-tuned models display a general
upward trajectory for IMV and Abzaliev, whereas the linear probe continues to follow the
same downward trend when going deeper in the layers, as seen in previous chapters. This
demonstrates that deeper transformer layers in AVES encode increasingly abstract features that
can effectively classify calls, but only when these layers are fine-tuned. A linear probe, which
freezes the backbone, cannot leverage these deeper embeddings, and thus its performance
declines in later layers. In contrast, LoRA injects a small number of trainable parameters into
each layer, providing just enough task-specific flexibility to enable each additional layer to
contribute positively, yielding a steady upward trend in performance. Practically, this implies
that when extracting features from deeper layers within the transformer, one should pair them
with parameter-efficient fine-tuning methods, such as LoRA, rather than relying on a fixed
feature extractor alone.

8.4.5 Classifier Comparison: Linear Layer vs. MLP

The results obtained in the previous Section 8.4.4 can be directly compared, on the same
datasets and feature representations, with those from Chapter 7’s Section 7.3.1. In this chapter,
we fine-tuned models using LoRA with a single linear output layer, as depicted in Figure 8.5,
and compared them to a linear layer baseline. However, in previous chapters, we employed a
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MLP, composed of three blocks of [Linear, LayerNorm, ReLU] layers and a final linear layer, to
evaluate various feature representations.

Figure 8.10 shows the highest scores of each scenario (a—c) from Figure 8.9, across all layers,
alongside the corresponding MLP results from earlier chapters. This allows us to assess the
potential benefit of classifier complexity, specifically, to see whether using a non-linear MLP
really leads to better performance than a single linear layer.

AVES HUBERT

Abzaliev
w S w [e)]
o o o o
1 1 1 1

N
o
1

10+

UAR [%]

(a) (b) (c) MLP (a) (b) (c) MLP
Scenario Scenario

Figure 8.10 — Best UAR results across layers for the (a), (b), and (c), scenarios defined in RQ4, using
alinear layer classifier, compared to an MLP classifier.

We can observe that for the Abzaliev dataset, the MLP classifier clearly outperforms the
single-layer LoRA variants, (b) and (c), for both AVES and HuBERT, suggesting that the added
classifier capacity and non-linearity does help for CTID. However, for IMV, the opposite holds
true: both single-layer LoRA models yield higher scores than the MLP classifier, indicating
dataset-specific behavior.

Overall, these results do not allow us to draw general conclusions. While increased capacity
may help in some cases, it may not be universally beneficial. Further investigation, such as
fine-tuning a LoRA model with a non-linear MLP classifier, could give deeper insight into the
impact of classifier capacity and non-linearity in this context.

8.5 Conclusions

In this chapter, we studied the potential of parameter-efficient fine-tuning (PEFT) for adapting
large speech and bioacoustic SSLs models. We showed that Low-Rank Adaptation (LoRA) can
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greatly enhance call-type classification of animal vocalizations when sufficient labeled data
is available. We systematically investigated a number of research directions by conducting a
series of controlled experiments regarding LoRA adapter placements, layer selections, and
fine-tuning strategies, and arrived at the following insights:

* Transformer encoder matrix selection: adapting an increasing subset of projection
matrices yields steadily higher performance, with adaptation of entire self-attention
and feed-forward projections achieving the best UAR.

* LoRA adapters scope: extending LoRA adapters beyond the Transformer encoder to
the feature projection layer yields only marginal gains, whereas fine-tuning the convo-
lutional feature extractor consistently and significantly degrades downstream perfor-
mance.

* Layer selection strategy: neither ‘bottoms-up’ nor ‘top-down’ layer selection strategies
clearly outperforms one another. Both produce comparable results when adapters are
placed on the same matrices.

* Fine-tuning strategy: on the larger IMV dataset, LoRA fine-tuning (with either freezing
or pruning) substantially outperforms simple linear probing across nearly all layers. In
contrast, on the smaller Abzaliev dataset, simple linear probing remained more reliable,
though the performance gap was modest. This indicates that LoRA’s efficacy scale with
dataset size.

* Classifier selection: LoRA adaptation with a single linear layer outperforms a deeper
4-layer MLP classifier head on IMV, while the reverse is seen for Abzaliev, indicating
further investigation is needed to draw firm conclusions.

In conclusion, the overall results indicate that low-rank adaptation is a highly effective PEFT
method and powerful tool for bioacoustic classification when ample data is available, enabling
even deep transformer layers to contribute meaningfully. In low-data settings, however, a
classic linear probe may still be preferable.
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The material presented in this section is adapted from the following publications:

 E. Sarkar and M. Magimai-Doss (July 2025a). “Leveraging Sequential Structure in
Animal Vocalizations”. In: Idiap-RR-06-2025.

9.1 Introduction

In all the previous chapters, we averaged each data sample’s extracted feature embeddings
x € RY*D into a vocalization-level representations, denoted as functional vectors f, = u(x) €
RP or Juo = [ w(x), U(x)] € R?P. While these ‘stats-pooled’ representations have proven very
valuable for classification tasks, bandwidth analysis, and model adaptation, they ignore the
sequential aspect of animal calls: each vocalization is treated like an unordered bag of frame-
level feature embeddings. This completely overlooks the fact that many animal arrange
acoustically distinct sub-vocalization units in a specifically ordered sequences that carry

important communicative and syntactic information (Kershenbaum, D. Blumstein, et al.,
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2016). The goal of this final chapter is thus to investigate alternate feature representations that
can capture the sequential structure within animal vocalizations, and leverage the unutilized
temporal information to improve classification performance.

In order to effectively model sub-vocalization unit level sounds, we turn to symbolic speech
tokenization. Recent work has shown that discrete audio tokens obtained through vector-
quantization of ‘continuous’ SSL feature embeddings can effectively encode acoustic informa-
tion, and thus be utilized for many speech and audio tasks (Guo et al., 2025). Based on this
prior, we extend this framework to bioacoustics, and explore whether token sequences can
also reveal meaningful structure in animal vocalizations and help distinguish call-types or
individual callers. A successful framework could even yield an inventory of recurring acoustic
sub-vocalization units in animal communication. To the best of our knowledge, this is the first
work to explore discrete audio tokens for computational bioacoustics. To that end, we investi-
gate vector quantization (VQ) and gumbel-softmax vector quantization (GVQ) as tokenization
methods for capturing the sequential structure in non-human animal vocalizations.

The rest of the chapter is structured as follows. First, Section 9.2 provides a brief overview of
sequences in animal vocalizations. Then, Section 9.3 presents an in-depth review of repre-
sentation learning using discrete audio tokens. Section 9.4 describes our experimental setup,
namely the quantizer training protocol, token sequence generation, and post-processing. In
Section 9.5, we conduct the pairwise distance analysis, and in Section 9.6 we benchmark the
downstream classification performance. Finally, we conclude with implications and directions
for future research in Section 9.7.

9.2 Sequences in Animal Vocalizations

The communicative power of sequences in animal vocalizations is well-documented across
species, with vocal sequences often serving key biological roles such as territory defense,
mate attraction, social bonding, and alarm signaling (Kershenbaum, D. T. Blumstein, et al.,
2016). The complexity of these sequences manifests through distinct patterns of acoustic
units that are combined in species-specific ways, following implicit or explicit syntactic rules.
For instance, songbirds produce vocalizations composed of repeated motifs and notes ar-
ranged in recognizable patterns (Catchpole and Slater, 2003), while cetaceans exhibit intricate,
temporally-structured acoustic sequences associated with social interaction and individual
identification (Mercado and Handel, 2012). Thus, capturing and analyzing the inherent se-
quential structure in animal vocalizations could substantially enhance our understanding of
their communicative function and biological significance.

Several approaches have been proposed in the biological literature to analyze the temporal
and structural complexity of vocalizations. These include methods derived from information
theory and Markovian analyses of transitions between acoustic units (McCowan, Hanser,
and Doyle, 1999), as well as pattern recognition techniques applied directly to acoustic se-
quences (Kershenbaum et al., 2012). However, these biologically-driven studies often rely
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heavily on manual annotations or simple acoustic measurements, limiting their scalability
and computational generality.

9.3 Discrete Audio Tokens-based Representation Learning

Many self-supervised speech SSL models, including those we have utilized throughout this
thesis, employ discrete token representations during their pre-training stages. Typically, these
discrete tokens are derived using a quantization process, either through integrated Vector
Quantization (VQ) layers (Baevski, Schneider, and Auli, 2020; Baevski et al., 2020) or offline
clustering mechanisms applied to continuous embeddings (W.-N. Hsu et al., 2021). However,
such discrete representations are primarily intended to facilitate self-supervised learning
objectives, such as masked prediction or contrastive learning, and are usually not directly
exposed or utilized during inference or downstream tasks.

In this chapter, we explicitly leverage the discrete tokenization methodology. To do so, we
first extract window-level embeddings from a pre-trained SSL model, consistent with our
earlier experiments, and subsequently train a separate quantization module which maps
the embeddings into sequences of discrete tokens. Note that the quantization is performed
independently per frame, thereby preserving the temporal order of the original acoustic events
within the vocalization, and is trained separately on extracted embeddings from the pre-
trained encoder, using the bioacoustic data of interest. This allows the codebook vectors to
adapt specifically to the acoustic characteristics and distributions of the vocalizations being
studied.

Codebook Nearest Euclidean neighbor:
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Figure 9.1 — Discrete call tokenization pipeline using vector quantization.

The overall call tokenization pipeline, employed in this work, using vector quantization is illus-
trated in Figure 9.1. Specifically, a raw audio waveform s is first passed through a pre-trained
encoder F, producing continuous layer embeddings x € RE-*N*P where L is the number
of layers, N the number of frames in each layer, and D the dimension of each frame. Let
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xﬁ,” € RP denote the embedding extracted from encoder layer / at frame position n. Each layer
embedding is then quantized individually per-frame by a quantization function g, resulting in
discrete tokens t,(ll) = q[xﬁll)]. Formally, the quantization function maps each embedding from
continuous D-dimensional space to a discrete integer token index g : RP - {1,2,..., V} where
V denotes the vocabulary size, i.e., the number of unique discrete tokens. Each token index
corresponds directly to an entry in a finite set, referred to as the codebook C = {¢}, ¢, ..., ¢y},
where each code-vector ¢; € R corresponds to the i-th discrete token in the original embed-
ding space. This discretization step effectively compresses the representation since encoding
tokens only requires [log, V1 bits per frame.

Detailed descriptions of vector quantization and Gumbel-Softmax vector quantization, which
are the specific methods employed to train these quantization modules, are provided in
Section 9.3.1 and Section 9.3.2, respectively. We specifically leverage them due to their proven
effectiveness in quantizing audio embeddings. Note that these are both examples of single-
codebook quantizers. Most modern acoustic tokenizers have multiple quantizers. However,
for simplicity and clarity, we focus on hand-coded single-codebook ones in this work.

9.3.1 Vector Quantization (VQ)

While traditional clustering methods operate independently of model training, vector quanti-
zation integrates a discrete, learnable codebook directly into the neural network (Den Oord,
Vinyals, and Kavukcuoglu, 2017), enabling end-to-end optimization via gradient propagation
through the quantization step.

RV*P of V = 50 code-vectors, each of

We maintain a learnable codebook C = {c;,...,cy} €
dimension D = 768. Given an input embedding xﬁll), the quantization process selects the

nearest codebook vector c¢; by simply minimizing the Euclidean distance between the two:

qlx"1 = argmin [|x{ - ¢; 113 9.1)

i€{1,2,...,V}

which returns the token index which is the input’s discrete token. The codebook vector itself,
which we denote as ¢ £ C4(x), is passed on to subsequent networks.

To allow backpropagation through the non-differentiable nearest-neighbor argmin lookup
given in 9.1, a straight-through estimator (STE) (Bengio, Léonard, and Courville, 2013) is
employed to graft gradients from the quantized output c; back to xﬁll) during the backward
pass. The encoder thus receives learning signals from downstream losses, while the codebook
vectors themselves are updated via the VQ loss below. In our case, since we have pre-extracted
embeddings, no encoder is updated, and the downstream losses encourage the extracted
representations to align with their assigned code-vectors, even though only the codebook
parameters are updated. During training, we optimize the VQ loss which is jointly defined as
the sum of the codebook and commitment losses:
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9.3 Discrete Audio Tokens-based Representation Learning

Lvq = lIsglxP1 - crll5 + Bllx —sglerlll3. ©.2)

Codebook Loss Commitment Loss

where sg[-] denotes the stop-gradient operator and the beta coefficient is typically set to
B =0.25. The codebook loss shifts the selected code-vector ¢ toward its corresponding input
embedding xff), whereas the commitment loss conversely encourages the embedding to move
closer to its matched codeword. We iterate Lyq over all the layers L and frames N to compute
the total cost. While one can also update the codebook via an exponential-moving-average
(EMA) scheme (Den Oord, Vinyals, and Kavukcuoglu, 2017), we focus here on the loss-based
updates for clarity. Since the encoder is kept frozen, both terms in practice serve to adapt
the codebook vectors to the distribution of the bioacoustic embeddings, yielding a discrete

vocabulary that best captures their statistical structure.

VQs are unfortunately also known to suffer from codebook collapse, where the codebook
usage is highly imbalanced, i.e. most input embeddings get mapped to a one or two centroids,
while the rest of the codebook remains idle and unpdated, drastically reducing its effective
representation capacity.

9.3.2 Gumbel-Softmax Vector Quantization (GVQ)

To mitigate codebook collapse in the standard VQ, we also implement Gumbel Vector Quanti-
zation (GVQ) (Jang, S. Gu, and Poole, 2017), which uses the Gumbel-Softmax relaxation as a
proxy for classic Softmax and to enable differentiable sampling from a categorical distribution.
Given an input embedding x,(j ), alinear projection layer computes logits {ni}}il. The relaxed

one-hot vector p € AV~! is then obtained via:

D= exp((logm; + gi)/7)
' Z}/zlexp((logﬂj-kgj)/r)'

9.3)

where each g; is an independent sample from the Gumbel(0, 1) distribution and 7 is a fixed
temperature (set to 1.0). A straight-through estimator is applied so that, during the forward
pass, the highest-probability entry in p is discretized to a one-hot vector, while in the backward
pass gradients flow through p as if the operation were identity.

Training of the GVQ module is driven by an entropy-maximizing loss that encourages uniform
use of all V codewords. Equivalently, this can be written as a KL divergence between p and

the uniform distribution: v

Levg =) pilog(pi V) (9.4)
i=1

In our GVQ implementation, we implement several extensions to improve codebook utiliza-
tion and robustness. First, we augment the KL divergence objective with a tunable weight
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parameter agp. Second, we add a diversity loss term weighted by a hyperparameter Agjy,
which explicitly penalizes under-utilization of the codebook. Throughout training, we track
two key metrics: the codebook perplexity

\%4
PPL = exp(— 3 pilog ﬁi), 9.5)
i=1

where p; is the average probability of selecting codeword i, and the normalized perplexity
PPL/V. The diversity loss is defined to increase the normalized perplexity, thereby encouraging
the model to make use of a larger fraction of available codewords.

9.4 Experimental Setup

All of our experiments were conducted using the same preprocessing and batching pipeline
to ensure a fair comparison across conditions. For this work, we stuck to HuBERT as our SSL
model for extracting feature embeddings x € RE*N*P,

The remaining of this section is organized as follows: Section 9.4.1 gives an outline of the
quantizer training protocol, and Section 9.4.2 provides the overview of the acoustic token
generation, including the sequence post-processing.

9.4.1 Quantizer Training Protocol

We train all of our vector-quantization models on x using the Adam optimizer with a fixed
batch size of 32, running for up to 20 epochs on Train, and evaluating performance on a
held-out Val set to monitor convergence and guard against overfitting. To find the best
hyperparameter settings, we conduct a grid search over two quantizer variants, as given in
Table 9.1.

Table 9.1 — Hyperparameter search space for VQ and GVQ models.

Quantizer Hyperparameter Search Space
Learning rate le[-4, -3, -2]
VQ Commitment cost 0.25
EMA [True, False]
Learning rate le[-4, -3, -2]
KL weight [0.5, 1.0, 1.5, 2.0]
Diversity weight [0.0, 0.01, 0.05, 0.1, 0.2, 0.5]
GVQ Temperature schedule:
Max temperature 2.0
Min temperature 0.1
Decay factor 0.999
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9.5 Distance Analysis

Note that for both quantizer models, the codebook C is shared across all layers L during
training. Having the same symbol inventory for every layer makes the token sequences
directly comparable across layers, and removes the need to have 13 separate vocabulary
sets. Since the codebook must cover the union of all layer manifolds, a codebook-collapse is
unlikely, and much less so than the alternate scenario of layer-specific sub-codebooks.

Each mini-batch therefore contains all layers of every utterance during training: batch tensors
of shape (B, L, N, D), corresponding to the batch size, layer index, frame index, and feature
dimension respectively, are reshaped to (B x L, N, D), quantized with a V = 50 entry codebook,
and then reshaped back. This allows the quantizer g to see inputs from all layers, but then
generate token sequences ¢ drawn from the common symbol set.

9.4.2 Token Sequence Generation and Post-Processing

After training the quantizer on Train, we generate and save sequences of acoustic discrete
tokens t for each vocalization in the entire dataset as described in the pipeline in Section 9.3.
However, during batch processing, audio waveforms are repeat-padded to match the length of
the longest sample within the batch. This repetition artificially inflates all the token sequences
except one to be longer than the actual audio signals. To account for this, we apply some
post-processing to the sequence by first calculating the effective number of frames of each
data sample. We determine the downsampling factor of a batch by dividing the longest raw
audio length in a given batch by the number of frames in its token sequence. Then, for each
data sample, we compute the effective frame count by dividing its raw audio length by this
factor and rounding the result. Finally, the token sequence for each sample is trimmed to
this effective frame count, yielding a variable-length representation that accurately reflects
the original signal duration and excludes any tokens that result solely from the padding. To
ensure consistency with the original embedding extraction process, we implement verification
mechanisms that confirm sample ordering is maintained throughout the token generation
pipeline.

9.5 Distance Analysis

This section presents a distance analysis for the token sequences to identify any discernible
patterns or correlations once we obtain the token sequences for each vocalization using the
trained quantizers. Specifically, we are interested in observing the intra-class and inter-class
variability to understand the degree with which the generated token sequences are able to
distinguish from one class to another.

We use the Levenshtein distance d(;, ), a string metric also known as the edit distance, to
quantitatively measure the distance between a pair of discrete token sequences #; and #,. The
distance effectively represents the minimum number of ‘edits), i.e. insertions, deletions, or
substitutions, needed to change one sequence into the other. A distance d = 0 thus means
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that the two sequences are identical. It can go up to at most the length of the longer string.
However, this metric gives an absolute difference between sequences and is misrepresentative
when a pair of sequences have a large difference in lengths. To overcome this issue, we use

the normalized Levenshtein distance, which divides the calculated distance by the length of
d(ty,t)

max(lillyzltzl)

the distance is bounded between 0 and 1, representing identical and completely different

the longer sequence , where |- | denotes the length of the sequence. In this case,
sequences respectively. In the case of d = 1, one need to edit every character in the longer
string to transform it into the other.

We compute the pairwise Levenshtein distances for all data samples, grouping each compari-
son into one of the following four possible permutations:

(ie) Intra-caller, intra-calltype: two vocalization samples from the same caller producing the
same call-type. The distance between these is expected be the smallest.

(ii o) Intra-caller, inter-calltype: two vocalization samples from the same caller producing
different call-type.

(iii ») Inter-caller, intra-calltype: two vocalizations from different callers producing the same
call-type.

(iv e) Inter-caller, inter-calltype: two vocalizations from different callers producing different
call-types. The distance between these is expected be the largest.

Figure 9.2 presents the means of the distances distributions of the four aforementioned
categories, using the token sequences generated from the VQ model. We can observe that
groups (i ) and (iv ¢) behave as expected: they both have the smallest and largest distance,
on average, for all datasets. We also noticeably observe that group (ii )’s distance is larger
than group (iii ¢)’s for most datasets. This makes sense intuitively: two vocalizations produced
by the a caller vocalizing different call-types are more likely to be acoustically distinct, than
two generated by different callers vocalizing the same call-type. The discrete acoustic tokens
sequences reflect this distribution, demonstrating their ability to model and capture the
temporal information encoded in vocalizations.
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Figure 9.2 — Layer-wise mean Levenshtein distance between all pairs of VQ token sequences.
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9.6 Classification Analysis

While we can observe similar trends with the GVQ tokens on the Bosshard dataset, as shown
on Figure 9.3, the remaining datasets exhibit some different patterns. Notably, group (ii ¢)
and (iii «)’s trends are flipped in the Abzaliev dataset, showing that the intra-caller, inter-
calltype distances are smaller than inter-caller, intra-calltype ones. This may be due to the
comparatively large number of callers (80), which increases acoustic variability and makes
it harder to distinguish sequences of the same call-type produced by different callers than
those of different call-types produced by the same caller. Additionally, for Wierucka and IMV
datasets, the pairwise distances in group (iii ¢) are unexpectedly smaller on average than
in group (i ¢). This suggests that the GVQ tokens do not consistently preserve fine-grained
caller-specific information as well as the VQ tokens across all datasets.

Taken together, this analysis indicates that the standard VQ discrete token representations are
indeed capable of clustering sufficient acoustic information to discriminate by call-type or by
caller identity, under real-world, left-to-right temporal constraints. The degree of separability
can be measured with a token sequence classification task. The GVQ tokens, however, exhibit
some unexpected patterns and less consistent separability, indicating that they may be less
effective for classification.
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Figure 9.3 — Layer-wise mean Levenshtein distance between all pairs of GVQ token sequences.

9.6 Classification Analysis

Based on the insights of the comparative analysis, in section, we evaluate how well the sequen-
tial nature of token representations can be leveraged for call-type (CTID) and caller (CLID)
classification.

9.6.1 Experimental Setup

We classify the token sequences using the k-Nearest Neighbours (k-NN) algorithm. We use the
pre-computed pairwise Levenshtein distances as our distance similarity matrix, and iterate
over the hyperparameters given in Table 9.2, for each layer, to obtain optimal classification
results. The classifier is trained over Train, and the hyperparameters defined in the search
space are evaluted over Val, using UAR as the optimization criterion. The best hyperparameters
are then used on Test. The predicted label of a sample is determined by applying a majority-
voting framework on the actual labels of the k most similar sequences.
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Table 9.2 — Hyperparameter search space used for training the k-NN classifier.

Classifier Hyperparameter Search Space

Number of neighbours k [1, 3,5, 7, 9]

Neighbour weighting [Uniform, distance]
k-NN ) .

Distance Levenshtein

Task [CTID, CLID]

9.6.2 Results and Discussion

The CTID results are shown in Figure 9.4 for the VQ and GVQ token sequences. We compare
the results to a neural linear-probing baseline, as employed in the previous chapters, i.e. by
pooling the temporal information into a functional vector f5, € R2P, and classifying it using a
fully-connected layer.
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Figure 9.4 — Layer-wise UAR [%] for CTID using k-NN on token sequences

We can observe that the linear layer clearly outperforms the k-NN-based classification of
token sequences across all four datasets. Surprisingly, the VQ representations also consistently
and substantially perform better than the GVQ ones for all datasets except Bosshard. The same
trend can again observed for the CLID task, shown on Figure 9.5. GVQ especially struggles on
the Abzaliev dataset, essentially achieving chance-level performance. This strongly suggests
that the GVQ codebook has converged to a local optimum, or potentially collapsed to only a
small subset of symbols. In addition, while a single shared codebook can still encode enough
information for call-type discrimination, it is perhaps not expressive enough to preserve the
finer caller-specific nuances that exist in the continuous embeddings.

Bosshard Wierucka Abzaliev IMV

L T A T

40

404
5(30‘ 30 4
304
i ¥ 204 204
20 i w 20

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

CNN1 2 3456 7 8 9101112 CNN1 2 3456 7 8 9101112 CNN1 2 3 456 7 8 9101112 CNN1 2 3 456 7 8 9101112
Layers

—@— Linear —#— VQ GVQ ==+ Chance

Figure 9.5 — Layer-wise UAR [%] for CLID using k-NN on token sequences.
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9.6 Classification Analysis

The overall trends clearly indicate that while discrete token sequences do carry phonotactic
information that can be leveraged, the HuBERT-based feature embeddings still capture much
more meaningful information, even when stats-pooled into a vocalization-level vector. In
other words, the data tokenization process of converting the feature embeddings causes
a higher loss of information than what is gained by keeping and leveraging the temporal
structure of vocalizations at token-level representations.

Although we trained a single codebook, shared across all layers, for both VQ and GVQ, we still
observe that earlier layers tend to yield better performance across tasks, consistent with the
trends reported in previous chapters. This indicates that differences between layers persist
even after discretization, and that sharing a codebook does not diminish the higher capability
of earlier layers in encoding salient and transferable representations.

Table 9.3 — Best UAR [%] scores for each feature across layers. nc is the number of classes for that
dataset and task, and chance performance is calculated as 100/ 7. A represents the relative drop
in performance with respect to the linear layer baseline.

Task Dataset nc Chance Linear VQ GVQ AVQ AGVQ
Bosshard 7 14.30 48.81 35.20 35.52 27.88 27.23

CTID Wierucka 12 8.30 7436 5491 26.23 26.16 64.72
Abzaliev 14 7.14 41.07 25.24 9.78 38.54 76.20
IMV 11 9.10 61.75 40.65 24.94 34.17 59.60
Bosshard 8 12.50 45.52 31.31 24.65 31.22  45.85
CLID Wierucka 8 12.50 49.60 42.24 18.29 14.83 63.13
Abzaliev 80 1.25 59.09 1735 290 70.64 95.09
IMV 10 10.00 61.28 35.51 13.23 42.05 78.42

Table 9.3 tabulates the highest scores of each feature across layers, and also shows the drop
in performance, denoted with A, of the token sequence-based representations compared
to the linear baseline. Similar to the results in previous chapters, we can see that the CTID
classification yields higher scores than CLID across all feature representations. This highlights
that call-types differ in distinct spectro-temporal patterns that token sequences can still
capture, where as caller identity is largely carried by subtler characteristics that are harder
to preserve after vector quantization. This also suggests that discrete tokens need a higher-
resolution to be effective.

Figure 9.6 visually plots the same information. For CTID, discretizing the feature embeddings
with a VQ and GVQ drops the performance across datasets by ~26-39% and ~27-79% respec-
tively, when compared to stats-pooling the same features and then classifying with a linear
layer. For CLID, the drop is of ~15-71% and ~46-95% respectively. These strong decreases in
performances reveal that perhaps a single VQ or GVQ codebook is not enough to effectively
model the entire animal vocalizations alone, especially for CLID, or the arbitrary codebook
size of V = 50. In our early ablation experiments, however, we did not empirically observe a
significant change in performance when compared to V = 25 or 100. A plausible next step
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Figure 9.6 — Best UAR results across layers for CTID and CLID.

could thus be to train a quantizer model which employs multiple codebooks to retain a richer
set of temporal patterns.

9.7 Conclusions and Future Work

In this chapter, we explored alternate feature representations that could preserve the temporal
structure of animal vocalizations instead of averaging their extracted SSL feature embeddings
into single functional vectors, as in previous chapters. To that end, we investigated and
evaluated whether discrete acoustic token-based feature representations could effectively
improve call-type and caller classification performance.

To address this problem, we first trained a conventional vector quantization and a Gumbel-
softmax vector quantization module to convert the vocalization signals into discrete token
sequences for four different animal datasets. In our initial line of investigation, we conducted
a comparative analysis of the generated sequences using the Levenshtein distance metric.
The results showed that they do encode the sequential structure of animal calls, and exhibit
a degree of separability by call-type or caller identity across all datasets. We then trained a
k-Nearest Neighbour classifier on said representations to evaluate how well they could system-
atically distinguish vocalizations by call-type and caller identity. The results showed that both
representations were significantly weaker than a simple linear-probe baseline for all datasets.
While VQ showed a reasonable performance, GVQ yielded poor scores, nearing chance level
in many cases. Overall, the results indicate that token sequences do encode meaningful se-
quential structure, but the information lost during vector quantization outweighs the benefits
gained from explicit temporal modeling.

The scope for improvements on this topic is fairly large. A direct line of investigation would be
to improve the quantization module to reduce the information loss. Future work should ex-
plore larger, multi-codebook quantization architectures, such as Residual VQs (Juang and Gray,
1982) or Grouped VQ (Jégou, Douze, and Schmid, 2011). Wav2Vec2 notably employs a grouped
VQ module with G =2 codebooks of size V = 320. Knowing that its feature embeddings gave
a similar performance to HuBERT for Marmoset caller detection in Chapter 4 (Sarkar and
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Magimai.-Doss, 2023), evaluating its token sequences against a matched linear-probe baseline
could give meaningful insights.

Another direction of future work could explore more sequence post-processing techniques,
such as deduplication, i.e. removing consecutive duplicate tokens (X. Chang et al., 2024), or
acoustic byte-pair encoding (BPE) (Gage, 1994). These can further reduce the sequence length
and tighten the alignment between tokens and acoustically meaningful sub-units, which
could be particularly useful for vocalizations whose acoustic structure changes slowly.

In summary, despite the promise of symbol-based sequence modeling, this chapter confirms
that simple stats-pooled functional vectors remain a highly effective representation for bioa-
coustic classification tasks, even though they don’t directly leverage the temporal structure of
animal vocalizations.
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{1} Conclusions and Future Directions

10.1 Conclusions

Non-human animal vocalizations encode a wide range of information, such as call-type and
caller identity. This thesis studied the transfer of representations learnt from human speech,
in a self-supervised learning framework, to decode animal vocal communication. We focused
our investigations on a handful of research questions addressed across the different chapters
of this thesis, using vocalizations of dogs, marine mammals, and especially marmosets.

We first investigated the notion of speech-to-vocalizations cross-transferability and discussed
the potential of domain-agnostic pre-training of speech self-supervised learning (SSL) models
for decoding animal calls. We argued that, since these models use only the intrinsic structure
of a given input signal to extract essential information onto an embedding space, indepen-
dent of its acoustic domain, their utility should not be limited to modeling human speech
alone. Building on this understanding, we conducted a caller detection study on marmoset
vocalizations as a proof-of-concept, using eleven pre-trained SSL models and the InfantMar-
mosetsVox dataset. Our results showed that the embedding spaces did carry meaningful caller
information, and enabled us to systematically and successfully distinguish individual identi-
ties of marmoset in a binary classification framework without any downstream fine-tuning.
This was the first study to demonstrate that human speech-learnt representations transfer to
non-human animal vocalizations — a finding that has since been further corroborated on other
taxa, such as gibbons (Cauzinille et al., 2024) or bats (Heer Kloots and Knornschild, 2024).

We also extended and validated our approach beyond a binary caller detection task on a single
dataset, to multi-class call-type classification, caller identification, and caller sex identification
across multiple datasets. In addition to SSLs, we explored alternate feature representations,
namely an end-to-end acoustic model, and a hand-crafted Catch22 baseline. Through com-
prehensive experiments, we demonstrated that SSL-based feature representations and end-
to-end acoustic modeling led to better systems than Catch22 features for call-type and caller
classification, and achieved comparable performances for sex identification at an identical
sampling rate. Furthermore, we observed that the lower SSL layers were much more salient
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representations and yielded higher scores for all three tasks across all datasets than the higher
layers.

We also shifted our perspective from evaluating performance across tasks and datasets, to
scrutinizing and questioning the utility in applying ‘off-the-shelf’ SSL. models to marmoset
call analysis, and by extension animal vocalizations in general. SSL models are typically
pre-trained at a bandwidth of 8 kHz, which mismatches with the higher-frequency acoustic
vocalizations and auditory range of marmosets, leading to a significant loss of biologically
relevant information. Our experiments revealed that increasing the bandwidth size yields
a monotonic improvement in classification performance, highlighting that pre-trained SSL
models can be highly effective for bioacoustic tasks, provided their training bandwidth aligns
with the vocal frequency range of the target species.

As the field evolved while this thesis was in progress, a new generation of models pre-trained
directly on bioacoustic data began to appear, outperforming strong baselines across animal
benchmarks (Hagiwara, 2023a). We explored whether these specialized models actually offered
a significant advantage over those pre-trained on speech. Surprisingly, the head-to-head
comparison results showed that bioacoustics-trained models only yielded marginal gains in a
few select contexts, and otherwise matched the performance of speech-pretrained networks.
In addition, it was also unclear how models pre-trained on human speech compared to those
trained on general audio. Results showed that general audio performed comparably to those
pre-trained on speech, suggesting that it is the domain-agnostic self-supervised pre-training
itself, i.e. the way the model is encouraged to discover intrinsic structure in any audio signal,
rather than the specific acoustic domain, that endows these networks with cross-domain
generalizability.

Beyond training classifiers on features extracted from frozen pre-trained models, we also
investigated directly fine-tuning them. First, we investigated whether fine-tuning speech pre-
trained models on automatic speech recognition (ASR) task in a supervised framework could
introduce an inductive bias, enhancing them for bioacoustic classification. However, this pro-
duced mixed results, offering no consistent improvement, suggesting that the general-purpose
representations learned during SSL pre-training were already well-suited for bioacoustic tasks.
We then explored whether fine-tuning pre-trained speech or bioacoustics SSL models directly
on the downstream animal data would yield better performance. We demonstrated that these
models can be successfully adapted to improve call-type classification performance when
ample labeled data is available, and can substantially improve performance compared to a
simple linear classifier.

Finally, we looked at alternate feature representations which could preserve the sequential
structure of animal vocalizations, instead of pooling them into a single functional vector,
and leverage the encoded temporal information to improve performance on call-type and
caller identity classification. We trained vector quantizers transform extracted feature em-
beddings into discrete acoustic token sequences, and then classify them using a k-Nearest
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Neighbour classifier. However, the results showed that token-based feature representations
were substantially weaker for both tasks, than a simple linear-layer applied to the stats-pooled
functional vector. This highlighted the latter’s effectiveness as a feature representation for
animal vocalization classification tasks.

Taken together, these studies establish that self-supervised speech, as well general audio
classification models, constitute a powerful, domain-agnostic toolkit and offer a remarkably
versatile starting point for decoding non-human animal vocal communication. This thesis
provides a practical and robust framework for advancing bioacoustic analysis, that can be
readily extended to new species, recording conditions, and behavioral contexts. As SSL models
continue to evolve, our framework and findings point the way toward increasingly sensitive,
scalable bioacoustic systems with minimal species-specific feature engineering.

10.2 Limitations and Future Directions

Most contributions of this thesis have been at a foundational-level, focusing on leveraging
technologies developed for human speech, and demonstrating their feasibility or adaptability
for non-human animal vocalizations. The next step would be to leverage these findings to
develop these frameworks from proof-of-concepts into full applications and tools for further
research. There are several directions that could be expanded on for future research:

Automated vocalization detection: in this thesis, we always assumed pre-segmented calls,
and did not investigate the detection of animal vocalizations within audio recordings. De-
veloping robust call detection methods which can work in-the-wild are of particular interest,
as bioacoustics data comes from challenging, un-controlled, and noisy environments, and
domain experts in animal calls are very rare. Developing robust automated vocalization de-
tection systems is of significant value as it can vastly reduce the amount of manual expert
interventions needed. The same SSLs feature embeddings can likely be very easily leveraged
for this task. Alternate unsupervised and computationally efficient signal-processing based
techniques could also advantageous over deep learning-based methods as they are often more
interpretable for linguistic research.

Caller diarization in multi-speaker recordings: progressing from animal caller identity classi-
fication to full caller diarization would be extremely valuable to researchers collecting data
with multiple individuals vocalizing in the same audio recording. Human speech diarization
is large field with a rich history. Off-the-shelf speech-diarization frameworks could likely
provide a starting point, but adapting to animal-specific needs will provide significant value
and benefit.

Linking tokens to acoustic and biological correlates: If more complex quantizers, such as
residual or grouped VQs, can surpass linear-probing baselines, one could leverage discrete
acoustic tokens to develop an inventory of sub-vocalization units per species. Such a token
lexicon could open up novel research directions in computational bioacoustics, particularly
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in understanding combinatorial structure within animal calls, and drawing closer parallels
with phonemic organization in human language. However, a more detailed acoustic and
spectral investigation is needed to meaningfully ground these discrete units in biology. This
includes analyzing their spectral and temporal properties, such as pitch, duration, vocal tract
resonances, and harmonic structure, and identifying how these potentially relate to known
physiological or behavioral correlates. Doing so could help clarify whether particular tokens
correspond to biologically meaningful units, such as arousal, social intent, or vocal production
mechanisms. Future work could also consider species-specific signal analyses, as articulatory
constraints and communicative functions vary widely across species.

Cross-species transfer and generalisation: in this thesis we focused on the transferability of
human speech or general audio to animal vocalizations. Cross-species transfer remains an
open-question. Evaluating how well SSL models or quantizers trained on one species transfer
to others could give reveal the broader applicability of feature embeddings or symbolic audio
representations.
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