
Accepted on the jury’s recommendation

for the award of the degree of Docteur ès Sciences (PhD)

by

Transferability of Learnt Speech Representations for 
Decoding Non-Human Vocal Communication

Eklavya SARKAR

Thesis n° 11 175

2025

Presented on 8th August 2025

Prof. V. Cevher, jury president
Dr J.-M. Odobez, Dr M. Magimai Doss, thesis directors
Dr M. Miron, examiner
Dr M. Cernak, examiner
Prof. D. Van De Ville, examiner

School of Engineering
L’IDIAP Laboratory
Doctoral program in Electrical Engineering





To my late grandparents,

Dr. Ratna and Prof. Manoj Kumar Sarkar,

who dedicated their entire lives to science and teaching.





Acknowledgments

I would like to express my gratitude to all the people whose support has made this thesis

possible. First and foremost, I thank my main supervisor and thesis co-director, Dr. Mathew

Magimai-Doss, for giving me this valuable opportunity. I entered the field of speech processing

with no prior experience or knowledge, yet leave with several published conference and

journal papers. This was largely due to his broad knowledge, patience, willingness to teach,

and especially his gentle nature, all of which have been key to my growth as a researcher.

Whenever I faced an obstacle, no matter the topic or technicality, I could always turn to him

for advice and leave with a number of ideas for surmounting it. I am sincerely grateful to have

had a mentor who genuinely cares about the development and well-being of his students.

I also thank Dr. Jean-Marc Odobez for agreeing to be my thesis director. My gratitude extends

to the jury members, namely Dr. Marius Miron, Dr. Milos Cernak, and Prof. Dimitri Van

De Ville, as well as the jury president, Prof. Volkan Cehver. I am also indebted to Idiap’s

administrative and technical staff for their constant support, especially from Frank Fomaz,

Louis-Marie, and Laura Coppey, who made me feel welcome at Idiap since my first day.

Most of all, I would like to express my gratitude to all the people at Idiap who felt like a

true family and made the past five years an experience of a lifetime. I have never had a

more international and tightly-knit group of friends, blending a wide range of cultures and

backgrounds. In my twenty years in Switzerland, I have often felt a lack of openness towards

other cultures, but my time here has filled that gap with a mountain of cherished memories,

shared milestones, and personal growth. Idiap truly feels like a warm and welcoming home

for people from all around the world, and I hope it always remains so.

To that end, I would like to first thank the people who helped me at the very beginning of my

academic journey. I would not be here without the patient guidance of Laurent, my first Idiap

friend, with boundless intelligence, and from whom I’ve perhaps learnt the most. I equally

thank Parvaneh for supporting me in many times of need, as well as Apoorv for many engaging

discussions, novel ideas, and being an overall inspiring role-model researcher and friend. My

journey would have been undeniably harder without the presence of Zohreh to share my

numerous anxieties and health struggles, and Amir, who helped solve many technical issues.

I also thank Fabio for his inclusivity, Roberto for his endless entertaining stories and thoughtful

i



Acknowledgments

conversations, Pablo for his constant willingness to help, Andrei for helping me move, François

for his humour, Anshul for his friendship – at the office, gym, or on the dancefloor – as well as

Arya, Pierre, Florian Piras, Karl, Haruki, Florian Mai, Tilak, Suhan, Sarthak, Enno, Julian, Evann,

Michiel, Maxime, Carlos, Sergio, Mirko, Cem, and Andrea for their company. I am also very

happy to have developed a close friendship with Darya and Barbara, both of whom play along

with humour, hype me when needed, and ground me when necessary. I shared equally many

lovely moments with Yulia, Louise, Chloe, Hande, Laura Vásquez, Imen, Sargam, Mingchi,

Colombine, Vedrana, and Ina. Lastly, I would like to thank Neha for tirelessly celebrating

everyone’s birthdays and being the best cook anyone could ever ask for.

This thesis was funded by the Swiss National Science Foundation’s NCCR Evolving Language

project (grant no. 51NF40_180888), which provided the financial support for conducting

this research. Over the course of this PhD, I traveled to five conferences, where I had the

opportunity to present my work, connect with researchers in the field, gain valuable insights,

and receive constructive feedback – all of which helped develop my self-confidence and gave

me a sense of identity. I am grateful for the project’s exceptional summer retreats and win-

ter meetings, which allowed me to meet and befriend a whole new group of PhD students,

postdocs, and PIs from other institutes working in linguistics, biology, philosophy, and neu-

roscience. The transdisciplinary nature of the project pushed me to expand my knowledge

beyond machine learning and engineering, and into areas such as animal communication and

the evolution of language, leading to successful collaborations. I feel exceedingly fortunate to

have been part of such a vibrant Swiss initiative – one that made me feel part of a much larger

collective and allowed me to experience many unique moments and milestones.

The idea of pursuing a PhD might never have occurred to me without the values instilled by

both of my parents, Sharad and Satyajit, from a young age, especially to strive for excellence

and to think beyond conventional paths. This PhD is as much their success as it is mine. I’m

deeply thankful to them, as well as to my sister Aranya and my brother-in-law Marko, for their

unwavering support throughout this journey. I especially thank my mother, who put me above

other priorities and stayed with me in Martigny several times during the most critical periods

of my PhD, taking care of my health and helping me meet paper and project deadlines on

time, often under challenging conditions. I also thank Anant for always checking in on my

well-being, being constantly available to listen to my issues, and providing emotional support.

Finally, I would also like to acknowledge my own journey – not just during this PhD, but

everything that led up to it. I am proud to be submitting an EPFL thesis at long last, and to be

defending it exactly a decade after dropping out from the same institute, as an undergraduate.

It has been a long and often difficult journey, involving moving to different cities abroad and

adapting to foreign cultures. And yet, my path eventually brought me back to where it had

once nearly ended. Closing this chapter of my life, I now look forward to the next one, and will

always look back on this one with fondness and a sense of accomplishment.

Martigny, July 23, 2025 Eklavya

ii



Abstract

Humans and animals both use acoustic signals for vocal communication. The advent of

self-supervised learning (SSL) has enabled neural networks to learn robust and general feature

representations through the intrinsic acoustic structure of input signals, without prior knowl-

edge or supervision. Given that both human speech and animal vocalizations are inherently

structured signals that encode information, this thesis investigates whether representations

learnt from human speech are transferable for decoding non-human animal vocalizations.

We first formulate and validate our core hypothesis through a proof-of-concept caller detection

study on marmoset vocalizations, where multiple pre-trained SSL models are benchmarked.

Building on this, we further evaluate their transferability across multiple marmoset datasets,

and demonstrate that early layer representations from SSL models such as WavLM outperform

traditional handcrafted features for call-type and caller identity classification.

We then explore how differences in auditory bandwidth between humans and animals in-

fluence the transferability of such SSL features. We show that bandwidth mismatches can

have an impact on performance, and increasing its size yields a monotonic improvement for

call-type and caller classification. We also compare SSL models pre-trained on speech with

those pre-trained on general audio or directly on animal vocalizations. Our experiments reveal

that general-purpose audio pre-training yields comparable performance to human speech

pre-training, and the bioacoustics-trained models marginally improve it on specific datasets.

To further improve classification scores, we investigate model adaptation of the pre-trained

SSL models. Fine-tuning such speech models on an automatic speech recognition task in a

supervised framework does not bring any consistent improvements in performance, and in

some cases, actually leads to a performance decline in the later layers. However, parameter-

efficient fine-tuning strategies, such as Low-Rank Adaptation (LoRA), combined with selective

layer freezing and pruning, achieves significant gains over standard linear probing in specific

scenarios, while also reducing training complexity. Our results underscore the importance of

LoRA adapter placements, layer selections, and fine-tuning strategies.

Finally, we attempt to leverage the sequential nature of animal vocalizations. While previous

experiments temporally averaged extracted features into single vector representations, we

use vector quantization frameworks to discretize frame-level SSL features into acoustic token
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Abstract

sequences. We evaluate these sequences through Levenshtein-distance analysis and sequence

classification, and find that while they preserve some degree of acoustic discriminability,

their performance remains well below that of a simple linear classifier applied to averaged

functional vectors.

On the whole, this thesis demonstrates that SSL representations learnt from human speech

can generalize effectively to animal vocalizations. Our work provides a practical and robust

groundwork for computational bioacoustics, as well as a foundation for further bridging

machine learning with animal communication science.

Keywords: bioacoustics, animal vocalizations, self-supervised learning, speech and audio fea-

ture representations, transfer learning, low-rank adaptation, vector quantization, bandwidth,

call-type and caller classification, machine learning.
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Résumé

Les humains et les animaux utilisent tous deux des signaux acoustiques pour communiquer

vocalement. L’avènement de l’apprentissage auto-supervisé (AAS) a permis aux réseaux neu-

ronaux d’apprendre des représentations de caractéristiques robustes et générales à partir

de la structure acoustique intrinsèque des signaux d’entrée, sans connaissance préalable ni

supervision. Étant donné que la parole humaine et les vocalisations animales sont toutes deux

des signaux structurés qui véhiculent de l’information, cette thèse étudie si les représentations

apprises à partir de la parole humaine peuvent être transférées pour décoder les vocalisations

animales non-humaines.

Nous formulons et validons d’abord notre hypothèse principale à travers une étude de dé-

tection de l’appelant sur les vocalisations de ouistitis, en utilisant plusieurs modèles AAS

pré-entraînés. En nous appuyant sur cette première analyse, nous évaluons ensuite leur trans-

férabilité sur plusieurs ensembles de données de ouistitis, et montrons que les représentations

des couches inférieures de modèles tels que WavLM surpassent les caractéristiques tradition-

nelles conçues manuellement pour les tâches de classification du type d’appel et de l’identité

de l’appelant.

Nous explorons ensuite comment les différences de bande passante auditive entre humains

et animaux influencent la transférabilité de ces représentations AAS. Nous montrons que

les incompatibilités de bande passante peuvent affecter la performance, et qu’une bande

passante plus large entraîne une amélioration monotone pour la classification du type d’appel

et de l’appelant. Nous comparons également des modèles AAS pré-entraînés sur la parole

humaine à ceux entraînés sur de l’audio général ou directement sur des vocalisations animales.

Nos expériences montrent que les modèles pré-entraînés sur de l’audio général atteignent des

performances comparables à ceux pré-entraînés sur la parole humaine, et que les modèles

entraînés sur des données bioacoustiques peuvent légèrement les surpasser sur certaines

bases de données.

Pour améliorer davantage les scores de classification, nous étudions l’adaptation des modèles

AAS pré-entraînés. L’adaptation supervisée de modèles pré-entraînés sur la parole à une tâche

de reconnaissance automatique de la parole n’apporte pas d’amélioration systématique des

performances, et peut même entraîner une baisse dans les couches neuronales supérieures.

En revanche, des stratégies d’adaptation efficaces en paramètres, telles que l’adaptation à
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faible rang, combinées à un gel et une sélection partielle des couches neuronales, permettent

d’obtenir des gains significatifs par rapport à un simple classificateur linéaire dans certains scé-

narios, tout en réduisant la complexité d’entraînement. Nos résultats soulignent l’importance

du placement des adaptateurs, du choix des couches, et des stratégies d’adaptation.

Enfin, nous tentons de tirer parti de la nature séquentielle des vocalisations animales. Alors

que les expériences précédentes moyennaient temporellement les caractéristiques extraites

en un seul vecteur fonctionnel, nous utilisons des méthodes de quantification vectorielle

pour discrétiser les représentations AAS en séquences de jetons acoustiques. Nous évaluons

ces séquences à l’aide de l’analyse par distance de Levenshtein et de la classification de

séquences, et constatons que, bien qu’elles conservent une certaine capacité de discrimination

acoustique, leurs performances restent inférieures à celles d’un simple classifieur linéaire

appliqué à des vecteurs moyens.

Dans l’ensemble, cette thèse montre que les représentations AAS apprises à partir de la parole

humaine peuvent se généraliser efficacement aux vocalisations animales. Notre travail propose

un cadre pratique et solide pour la bioacoustique computationnelle, et jette les bases d’un

rapprochement entre apprentissage automatique et science de la communication animale.

Mots-clés : bioacoustique, vocalisations animales, apprentissage auto-supervisé, représen-

tations de caractéristiques de la parole et de l’audio, apprentissage par transfert, adaptation

à faible rang, quantification vectorielle, bande passante, classification du type d’appel et de

l’appelant, apprentissage automatique.
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1 Introduction

Bioacoustics is the study of animal sounds, specifically the production, transmission, and

reception of acoustic signals in animals and their environments, and is often studied to under-

stand the mechanisms underlying animal vocal communication (Bradbury and Vehrencamp,

1998). Animal vocalizations are of particular interest as they encode a range of critical informa-

tion, spanning from individual and social behavior (Hauser, 1996; D. T. Blumstein et al., 2011)

to species interactions, habitat health, and ecological dynamics. In addition, understanding

bioacoustic signals can provide key insights into the foundational principles shared by hu-

man and animal communication systems (R. M. Seyfarth and D. L. Cheney, 2010; Fedurek,

Slocombe, and Zuberbühler, 2016). Bioacoustics is thus also used to study the origins and

evolution of language and vocal learning (Hurford, 2012; Fitch, 2018), as a means to deepen

our understanding of communication in the non-human natural world.

Human vocal communication has been extensively studied and has progressed through suc-

cessive stages of methodological innovation and refinement. Early speech processing systems

relied on explicit models of speech production, most notably the source–filter model (Fant,

1970), as well as signal-processing theory. These foundations gave rise to methods such as

linear predictive coding (Atal and Hanauer, 1971) and carefully engineered spectral features

like Mel-frequency cepstral coefficients (MFCCs) (Davis and Mermelstein, 1980). However, the

advent of artificial intelligence and deep learning (LeCun, Bengio, and Hinton, 2015; Schmid-

huber, 2015) demonstrated that many of these hand-designed priors are no longer essential:

rich, task-relevant representations can be learned directly from raw audio with just supervision

and minimal domain knowledge (Hinton et al., 2012; Dahl et al., 2012; Graves, A.-r. Mohamed,

and Hinton, 2013). More recently, self-supervised learning (SSL) has enabled models to learn

robust, generalizable representations from the geometry of unlabeled speech data (Oord, Y. Li,

and Vinyals, 2018), eliminating the need for direct supervision and annotated corpora. When

combined with the availability of large-scale data, high-performance computing clusters, and

novel transformed-based architectures (Vaswani et al., 2017), technologies such as automatic

speech recognition (Baevski et al., 2020; W.-N. Hsu et al., 2021; Radford et al., 2023), speaker

identification (Snyder et al., 2018b; Desplanques, Thienpondt, and Demuynck, 2020; Bai and
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X.-L. Zhang, 2021), and text-to-speech synthesis (van den Oord et al., 2016; Shen et al., 2018)

have progressed to unprecedented levels of performance.

By contrast, the study of non-human vocal communication, though rich in potential insights,

still remains relatively underdeveloped, with comparatively little prior knowledge to guide re-

search. Computational bioacoustics aims to ‘decode’ animal vocalizations to gain insights into

their communication. In practice, this means automatically deriving information from animal

signals through detection and classification tasks, such as vocalization detection, call-type clas-

sification, caller identification, sex classification. Early studies often relied on labour-intensive

manual data annotation, and predominantly used spectograms as input representation from

which further statistical features, such as peak frequencies, sound event durations, and more,

were derived. Such studies typically only addressed small, species-specific datasets with a

limited number of subjects, constraining the generalization and scalability across taxa and

recording conditions. More general investigations often focused on broad tasks which are

relatively easy, such as species classification, solvable using traditional machine learning

classifiers. Moreover, a strong proportion of these studies were also exclusively focused on

avian bioacoustics (Kahl et al., 2021; Ghani et al., 2023). Recent application of deep learning

networks to bioacoustics has shown promise, enabling researchers to learn salient representa-

tions to analyze animal vocalizations at a larger scale (Stowell et al., 2019; Sainburg, Thielk, and

Gentner, 2020). Notably, re-purposing deep learning architectures originally developed for

human speech tasks for bioacoustics has shown some success (Y.-J. Zhang et al., 2018; E. Coffey

et al., 2019; Bergler et al., 2019), suggesting potential domain transferability. Nonetheless, this

deep learning approach remains a species-specific approach, and requires model training

from scratch with supervision on large labeled datasets, which are still rare in bioacoustics.

Humans and animals both possess production and perception systems that allow them to

communicate vocally through acoustic signals (Prather, 2013). In humans, speech is generated

through a vocal production mechanism involving an excitation source, namely the vibration

of the vocal folds, and the vocal tract system (Jurafsky and Martin, 2025). Similarly, animals

also possess vocal production mechanisms (A. A. Ghazanfar and Rendall, 2008). Although

the biological specifics may differ, the existence and use of such acoustic mechanisms is a

shared commonality for vocal communication in humans and animals. The emergence of self-

supervised learning, as a modern deep learning framework in speech and audio processing,

has produced models capable of learning representations directly from the raw acoustic input,

without incorporating any prior knowledge about the underlying production or perception

systems. Instead, they learn by identifying intrinsic structure in the spectro-temporal patterns

of the signal itself. Given that both human and animal vocalizations are inherently structured

and non-random signals that encode meaning, this thesis investigates whether representations

learnt from intelligible, high-resource human speech can transfer to the acoustic domain of

animal vocalizations. We hypothesize that such representations, learnt in a self-supervised

framework, can serve as a powerful prior for decoding complex, low-resourced animal vocal

signals. Prior to this work, and to the best of our knowledge, no prior study had systematically

explored this question. To investigate this hypothesis in depth, we formulate the following
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central research questions (RQs) that we address in this thesis:

RQ1. Can representations learnt from human speech through SSLs be transferred to bioa-

coustic tasks, and if so, to what extent?

RQ2. How does a mismatch in auditory bandwidth between humans and the studied animal

affect this transfer?

RQ3. Is this transferability specific to speech models, or can representations learnt from

general audio also exhibit a similar cross-domain utility?

RQ4. Can adaptation of these pre-trained SSL models further improve the transferability ?

RQ5. How well can these transferred representations capture and leverage the sequential

structure of animal vocalizations ?

By addressing these questions, this thesis aims to establish groundwork that can serve as a

practical foundation for future computational bioacoustics studies.

1.1 Context and Motivation

This work is carried out within the NCCR Evolving Language, an interdisciplinary Swiss Na-

tional Science Foundation initiative to explore the evolutionary origins and future of language

and communication. As part of the Transversal Technology Task Force work package, the

key motivation for this thesis is to help develop computational tools to support biologists,

linguists, and ethologists in their research on human and animal communication. This line of

research is especially useful for the following causes:

• Conservation and biodiversity monitoring: passive acoustic recording offers a non-

invasive, scalable approach to track species presence, population, and behaviour over

time. Automated analysis of these recordings can alert conservationists to habitat

degradation, invasive species, or population decline without the need for costly field

surveys. To that end, integrating robust bioacoustics representations into real-time

sensor networks can facilitate continuous surveillance of remote habitats, and enable

tracking of ecological disturbances, species migration patterns, and general animal

welfare.

• Comparative communication science: animal vocalizations encode multiple layers of

information, including individual identity, social intent, and environmental context,

that follow the functions of human language. Decoding these signals with learnt rep-

resentations can allow us to compare structural patterns, such as call repertoires or

sequences, across species. By projecting vocalizations from diverse taxa into a com-

mon embedding space, researchers could investigate whether underlying semantic or
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phonetic abstractions are shared, giving insight into the evolutionary pathways of vocal

learning and information encoding.

1.2 Thesis Outline and Contributions

The structure of this thesis is axed around the defined research questions (RQ), and is organized

as follows:

Chapter 2 provides the theoretical foundation necessary to investigate the aforementioned

research questions. We review essential deep learning concepts and key speech and audio rep-

resentations. Chapter 3 gives an overview of animal vocalizations and the type of information

they encode, and presents the datasets employed in this thesis.

Chapters 4 and 5 both investigate RQ1. In Chapter 4, we formulate our core hypothesis on

cross-domain feature transferability, and validate it with a proof-of-concept study on a caller

identity detection task. We then extend this approach across multiple datasets and multi-class

classification tasks in Chapter 5.

Chapter 6 addresses RQ2, where we examine the impact of the pre-training bandwidth on

downstream bioacoustics classification tasks. Chapter 6 also investigates RQ3 by comparing

performance of SSLs pre-trained on speech against those on general audio. Lastly, Chapter 7

completes the study by also examining SSLs pre-trained directly on animal vocalizations.

Chapter 7 and 8 both explore RQ4 in depth, studying various model adaptation strategies and

fine-tuning domains for potential improvements in animal call classification performance.

Chapter 9 explores RQ5 by proposing feature representations based on discrete token se-

quences, and and evaluates them for animal calls. Finally, Chapter 10 concludes this thesis

and suggests directions for future work.

Each chapter contains a schematic overview, publication note, and any supplementary ma-

terial and collaboration notes. The schematic diagrams do not directly match the chapters’

sections, but instead present a thematic overview.
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2 Foundations of Deep Learning and
Speech Representations

The goal of this thesis is to decode non-human bioacoustic signals by leveraging machine

learning tools developed for high-resource human vocal communication. To that end, we

employed a variety of machine learning and deep learning networks, concepts, and techniques.

This chapter lays down the theoretical foundation for our work by first briefly reviewing

essential deep learning concepts, architectures, and layers in Section 2.1. Building on this

framework, we then explore various speech and audio representations relevant to bioacoustics,

including traditional handcrafted features, representations learned through deep neural

networks, and those derived from self-supervised learning and audio foundation models, in

Sections 2.2 to 2.4 respectively. The chapter serves as a bridge between fundamental deep

learning principles and the speech and audio methods used for extracting salient features

from bioacoustic signals.

2.1 Deep Neural Networks

2.1.1 Deep Learning Framework

Given a large dataset D(x , y) of paired input vectors x and target class labels y , deep learning

aims to learn the underlying mapping from the inputs to the targets. In this framework,

a deep neural network (DNN) approximates this mapping by modeling it as a parametric

function fθ, where the parameters θ are learned from the training data. For a given input x ,

the network produces an output prediction ŷ = fθ(x) intended to match the true target label

y . In this context, the notion of learning or training refers to the process of finding optimal

parameter values θ∗ such that the network maps training inputs to their corresponding targets

as accurately as possible.

The function fθ is typically constructed as a composition of several simpler, differentiable

sub-functions, commonly referred to as layers of the DNN:

fθ := f (1)
θ1

◦ . . .◦ f (L)
θL

, (2.1)
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where L is the number of layers. Each layer l implements an affine transformation, and is

characterized by its own set of parameters θl = {wl ,bl }, denoting the weights w and biases b.

The term ‘deep’ in deep learning refers to networks with a high number of stacked layers.

The training process involves optimizing the parameters by minimizing a loss function L
that quantifies the discrepancy between the network’s predictions and the actual labels. This

is typically achieved using gradient descent, an iterative method where the parameters are

updated as follows:

θt+1 = θt −η∇L(θt ), (2.2)

where θt represents the value of the parameters of the model at iteration t during training,

and η the learning rate. The gradients ∇L(θt ) are efficiently computed using backpropagation,

which applies the chain rule through the network layers. The overall training procedure is

summarized in the following three main steps as depicted in Figure 2.1:

1. Forward pass: calculates the activations for each layer using the inputs x and the current

parameters θ of the model, to predict an output ŷ .

2. Backward pass: computes the the gradients of the loss ∇Lwith respect to the activations

and parameters θ by propagating the error backwards through the network using the

chain rule.

3. Gradient step: updates the existing parameters θ of the model using equation (2.2).

Figure 2.1 – The deep learning framework. The loss function measures the quality of the network’s
output and provides a feedback signal to adjust the model parameters.

Once training is complete, the learned parameters are frozen, and the model’s generalization

capability is typically evaluated on an unseen test set. Moreover, the network can also serve as a

feature extractor, as the embeddings produced by its layers capture meaningful representations

of the input data. In this thesis, we predominantly work with pre-trained models, analyzing

the representations learned across different layers.

In short, a network transforms its input data into meaningful outputs, a process learned from

exposure to data samples and their labels. At its core, deep learning is about meaningfully
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transforming data, i.e. learning useful representations of the training dataset distribution that

bring us closer to the desired targets. This representation learning can also be understood from

a geometric perspective: the model applies a sequence of geometric transformations, with the

aim of learning disentangled representations of continuous and complex data manifolds in

high-dimension spaces, such that this space can be cleanly separable by class. Together with

the growing availability of data, improvements in computational hardware, and algorithmic

advances to the deep learning framework, this approach has driven the modern era of AI.

The following subsections provide a brief overview of the key deep learning architectures and

layers used in this thesis.

2.1.2 Linear Layer and Perceptron

The perceptron model was one of the earliest neural network models to see practical use in

machine learning (Rosenblatt, 1957). Its classification rule can is expressed as:

RD→R (2.3)

x 7→σ
(
w ·x+b

)
. (2.4)

where the weights w ∈RD and bias b ∈R are the learnable parameters of the model, and x ∈RD
is an input vector. The perceptron essentially consists of a single linear layer, (w ·x +b), which

performs an affine transformation. It is also known as a fully connected layer, because every

component of x is multiplied by a dedicated weight in w , and then summed together with a

bias term b. It is then followed by an activation function σ :R→R. The non-linear activation

is what enables the model to learn more complex decision boundaries.

Figure 2.2 – Schematic representation of the operations in a perceptron model.

In recent years and in this thesis, a single linear layer (i.e., without an explicit non-linear

activation function) is frequently employed as a simple classifier head on top of extracted

feature embeddings from a frozen pre-trained network, particularly when the preceding layers

have already learned a sufficiently rich representation of the data. Geometrically, the fully

connected layer defines an afine transformation, whose zero-level set {x ∈RD : w ·x +b = 0},

defines a decision boundary as a hyperplane which divides the input space into two separate

regions. Often, the extracted embeddings are sufficiently linearly separable that this simple

classifier can effectively distinguish between classes. As such, a fully connected layer not
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only serves as a fundamental building block in many modern DNN architectures but is also

commonly used at the end of a model to produce final class posterior probabilities.

In recent years and in this thesis, a single linear layer (i.e., without an explicit non-linear

activation function) is frequently employed as a classifier head on top of feature embeddings

extracted from a frozen pre-trained network, particularly when the preceding layers have al-

ready learned a sufficiently rich representation of the data. Geometrically, this fully connected

layer implements an affine transformation whose zero-level set, {x ∈RD : w ·x +b = 0}, defines

a decision boundary in the form of a hyperplane that divides the input space into two regions.

Often, the extracted embeddings are sufficiently linearly separable that this simple classifier

can effectively distinguish between classes. As such, the fully connected layer serves not only

as a fundamental building block in many modern DNN architectures but also as an effective

classifier on its own.

2.1.3 Multiple-Layer Perceptron

The linear perceptron model can be extended to a multi-dimension output by applying a

similar transformation to every output, where w ∈RK×D, b ∈RK, and σ is applied component-

wise. For ∀l = 1, . . . ,L, we define a multilayer perceptron (MLP) as:

RD→RK (2.5)

x (l ) 7→σ
(
w(l ) ·x(l−1) +b(l )). (2.6)

where l is the layer index. The intermediate layers between the input and output are referred

to as the hidden layers.

Figure 2.3 – Schematic representation of the operations in a multi-layer perceptron model

According to the universal approximation theorem, a single hidden-layer perceptron with

sufficient neurons can approximate any continuous function on a compact domain (Hornik,

Stinchcombe, and White, 1989). This theorem underscores the expressive power of even

relatively simple MLP architectures, which is also often used a classifier head in this thesis.
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2.1.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (LeCun et al., 1989; LeCun and Bengio, 1998) extend

linear layers by focusing on local patterns within the input. Instead of connecting every input

unit to every output unit (as in a fully connected layer), a convolutional layer slides a small

kernel or filter across the input, computing a weighted sum over each local region. This local

connectivity allows the model to capture spatially or temporally localized features, making

CNNs especially useful for speech and audio tasks.

Figure 2.4 – 1D Convolutional layer applied to a signal s. C represents the number of filters, kW
the window length, and dW the window shift (•).

Figure 2.4 illustrates a one-dimensional convolution layer applied to an input signal s. Each

of the C filters is defined by a kernel of width kW , which is convolved with the signal in

overlapping windows. Formally, for each position in the signal, the convolution output is

obtained by element-wise multiplication of the filter weights and the corresponding segment

of s, followed by a sum:

x ⊛kW =
w∑

i=1
xi ·kWi , (2.7)

Where the convolution’s filter window length, also known as the kernel width, is denoted as

kW . The stride dW , i.e. the window shift, determines how far the filter moves at each step.

Because the operation is repeated locally, neighboring parts of the input influence neighboring

parts of the output, preserving the signal’s structure.

A convolutional layer is often paired with a max-pooling layer, which reduces the output

dimension by taking the maximum value within a local window of length kW , shifted by dW ,

as presented in Figure 2.5).
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Figure 2.5 – Max-pooling applied to a signal s. kW and dW are the window length and shift (•).

2.1.5 Attention and Transformers

Although networks based on fully-connected and convolutional layers have achieved con-

siderable success, they also come with limitations. Fully-connected layers require fixed-size

inputs and quickly become impractical for very high-dimensional data. Convolutional net-

works, while effective at capturing local patterns, need multiple layers to model long-range

dependencies because each filter only covers a fixed-length context. In contrast, attention

layers overcome these issues by capturing weighted interactions across all positions in an

input sequence, making it easier to model long-range dependencies in high-dimensional or

variable-length inputs.

In an self-attention block, the input sequence x is first linearly projected into queries Q, keys

K , and values V . The attention weights A ∈RN×N are then computed as:

A = softmax

(
QK T

p
D

)
, (2.8)

where D is the dimension of the keys K . The self-attention output of layer l is given by:

SAl (x) = AV. (2.9)

These weights determine how much each element in the sequence should contribute to the

representation of every other element, effectively making the features context-aware.

A Transformer network is built by stacking multiple layers that combine self-attention with

feed-forward blocks (implemented as one-hidden-layer MLPs), along with layer normalization

and positional encoding. This architecture enables the model to capture global dependencies

efficiently and is central to many modern pre-trained speech recognition models used in this

thesis.
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2.2 Handcrafted Speech and Audio Representations

Traditional approaches to speech and audio analysis rely on handcrafted features derived from

expert knowledge in acoustics and signal processing. These knowledge-driven representations

capture essential aspects of audio signals, such as frequency content, temporal dynamics, and

spectral characteristics, that have long been instrumental in audio processing tasks. In this

section, we outline several of these representations which have been used for bioacoustics in

the literature, as well as in this thesis.

• Highly Comparable Time-Series Analysis (HCTSA) is an interpretable signal processing-

based framework that has been demonstrated to be useful for diverse time series applica-

tion domains (Fulcher, Little, and Jones, 2013). In this framework, a set of 7700 features

are extracted by characterizing the signal by different time series analysis methods, such

as, linear correlation, modeling fitting (e.g., autoregressive moving average analysis,

GARCH), wavelet analysis, extraction of information theoretic measures, which then

is combined with feature selection to build statistical models for the end task. In the

literature, these features have been investigated for bioacoustics, namely behavioral

birdsong discrimination (Paul et al., 2021), automated acoustic monitoring of ecosys-

tems (Sethi, 2020), as well as marmoset caller identification (Phaniraj et al., 2023). One

of the challenges of HCTSA approach is computational complexity and involves an

evaluation of many similar features.

• In a recent work, CAnonical Time-series CHaracteristics (Catch22) features, a subset of

the HCTSA feature set has been proposed which exhibit a strong performance across 93

real-world time-series classification problems, but are also minimally redundant (Lubba

et al., 2019).

2.3 Deep Learning based Speech and Audio Representations

Based on the general concepts and networks outlined in Section 2.1, this section presents the

speech and audio specific models developed with the advent of the deep learning framework.

Unlike the knowledge-driven features in Section 2.2, the representations given below are

learned automatically and purely from the audio data, without any specific assumptions.

• End-to-end raw-waveform modeling is a particular method in speech processing

that leverages both end-to-end acoustic modeling and raw waveform modeling with a

convolutional neural network. Figure 2.6 presents the complete pipeline for this network.

The input audio signal s is send through multiple blocks of the ‘feature learning stage’,

composed of a sequence of convolutional, max-pooling, and activation (typically TanH

or ReLU) layers. Then, the embedding size is reduced by sending through an 1D adaptive

average pooling, before flattening it and sending it through a final fully connected layer

and obtaining the posterior probability distribution through the softmax activation
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Chapter 2. Foundations of Deep Learning and Speech Representations

Figure 2.6 – Complete end-to-end raw-waveform pipeline. The input is the raw audio signal s,
and the output is the posterior probability distribution p(i |x) for each class i . σ represents an
activation function.

function. It is to be noted that the kernel filters in the convolutional layer are learned

during training, and the first convolutional layer cab be seen as signal processing filters

as they operate directly on the raw waveform (Palaz, Magimai.-Doss, and Collobert,

2019). To that end, the cumulative frequency response of these filters have been used

to gain a deeper understanding and interpretability of the information that these end-

to-end raw-waveform models learn during training (Muckenhirn, Magimai.-Doss, and

Marcel, 2018; Muckenhirn et al., 2019).

• Supervised features: Another strategy is to leverage models pre-trained in a supervised

fashion on large-scale audio datasets. One such example is the Pretrained Audio Neural

Network, or PANN (Kong et al., 2020), specifically the CNN14 architecture, which has

been trained on AudioSet, a large corpus of diverse general audio recordings. In contrast

to end-to-end raw waveform modeling, PANN operates on log-mel spectrogram inputs,

learning both spectral and temporal patterns of sound events.

In practice, CNN14 processes the extracted spectrograms with six 2D convolutional

blocks. Each block is composed of two convolutional layers with batch normaliza-

tion and ReLU activations, followed by an average pooling operation that progressively

reduces the time-frequency resolution while capturing increasingly abstract representa-

tions of audio events. Finally, a linear layer produces a 2048-dimensional embedding

that we can extract and use as a general-purpose audio representation. This approach

harnesses the strong generalization capabilities of supervised learning on extensive

labeled data, enabling robust feature extraction for downstream tasks.

2.4 Self-Supervised Speech and Audio Representations

Self-supervised learning (SSL) offers an alternative approach to speech and audio represen-

tation, one that does not require prior knowledge or target labels of input data. Instead, SSL

leverages vast amounts of unlabeled audio by training models to solve pre-text tasks, thereby

learning rich, transferable representations. In contrast to the supervised features discussed

earlier, which are learned from explicitly annotated datasets, SSL methods exploit the inherent

structure of the data, allowing them to capture complex acoustic patterns that can be adapted

to a wide range of downstream tasks. In the following sections, we outline the historical evolu-

tion of SSL in speech processing and detail a general framework consisting of pre-training on
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unlabeled data followed by task-specific fine-tuning.

2.4.1 Historical Development

The emergence of self-supervised learning in speech processing can be understood through

three distinct developmental stages:

1. Clustering and mixture models: Initial methods involved semi-automatic clustering

of speech patterns using algorithms such as k-means, enabling recognition of isolated

words by matching test samples to the nearest training clusters. Advances led to subword

units being modeled using Gaussian Mixture Models (GMMs). Hidden Markov Models

(HMMs) introduced dynamical modeling, supporting recognition of continuous speech

rather than isolated words. These generative models (GMM/HMM) were typically

trained by maximizing data likelihood, employing both supervised and unsupervised

training strategies. Generative models were also utilized to extract informative speech

features, leveraging their learned representations for downstream tasks such as speech

recognition, speaker identification, and language verification.

2. Stacked neural models: The second wave transitioned from generative mixture models

to neural network-based approaches, inspired by advances in representation learning

techniques from computer vision and natural language processing (NLP). Compared

to GMMs, neural architectures provided greater flexibility and capacity for modeling

diverse input signals. Techniques such as restricted Boltzmann machines (RBM), denois-

ing autoencoders, noise contrastive estimation (NCE), sparse coding, and energy-based

models emerged, initially within vision and NLP contexts, before adaptation to speech

tasks.

3. Learning through pre-text tasks: A more recent shift has been toward directly optimiz-

ing neural networks end-to-end using carefully designed pre-text tasks. Unlike earlier

methods relying on layer-wise training, third-wave approaches involve training all net-

work layers jointly. These methods frequently utilize very deep neural architectures,

often exceeding ten layers, and evaluate learned representations on diverse benchmark

tasks such as SUPERB for speech. The cornerstone of this third wave lies in pre-text

task design, allowing effective use of knowledge from large unlabeled datasets. Popular

tasks include generating complete information from partial inputs—such as predicting

masked tokens (BERT series) or next tokens in sequences (ELMo, GPT)—and contrastive

learning, where models learn representations by differentiating target instances from

negative samples.

2.4.2 SSL Framework and Pre-Text Tasks

Figure 2.7 depicts the typical two-stage framework of self-supervised learning (A. Mohamed

et al., 2022). It can be summarized as follows:
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Figure 2.7 – Self-supervised learning two-stage framework.

1. Pre-training: The network is first pre-trained on vast amounts of unlabeled data using

self-supervised objectives. During this phase, the model learns to extract meaningful

and transferable representations by solving carefully designed pre-text tasks, such as

predicting masked segments, reconstructing corrupted inputs, or contrasting similar

and dissimilar samples. This process enables the network to capture rich, underlying

structures in the data without relying on explicit labels.

2. Fine-tuning: Following pre-training, the learned representations are adapted to spe-

cific downstream tasks in the fine-tuning stage. Here, the pre-trained model is either

further trained on a smaller labeled dataset or its fixed embeddings are used as input

features for task-specific classifiers. Fine-tuning allows the network to tailor its generic,

self-supervised features to the particular requirements of applications such as speech

recognition, speaker identification, or other audio classification tasks.

The pre-text tasks for speech and audio SSL networks can be broadly categorized into the

following four groups:

1. Autoregressive reconstruction: In this approach, the model is trained to generate future

frames in an autoregressive framework. By learning to generate upcoming segments

based on past context, the network implicitly captures the temporal dynamics and

structure of the audio signal. Models such as APC (Chung et al., 2019) and VQ-APC

(Chung, Tang, and Glass, 2020) both operate on spectrogram representations, and utilize

this strategy, where the sequential prediction task forces the network to encode both

local and global dependencies.

2. Masked reconstruction: This category involves reconstructing portions of the input

signal that have been intentionally masked out. Unlike autoregressive methods that

predict future frames, masked reconstruction tasks require the model to fill in missing
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acoustic frames, encouraging it to learn contextual information from both preceding

and following segments. Models such as NPC (A. H. Liu, Chung, and Glass, 2021),

Mockingjay (A. T. Liu et al., 2020), and TERA (A. T. Liu, S.-W. Li, and Lee, 2021) employ

this approach on a spectrogram basis. The approach is analogous to image inpainting in

computer vision, and it benefits from the network’s ability to model the overall structure

of the audio spectrum.

3. Masked prediction: The network is trained to predict discrete pseudo-labels for the

masked regions instead of directly reconstructing the raw acoustic features. This task

forces the model to abstract the input signal into a higher-level, categorical represen-

tation, capturing salient characteristics that can be beneficial for downstream tasks.

Models such as HuBERT (W.-N. Hsu et al., 2021) and WavLM (S. Chen et al., 2022) adopt

this framework directly on the raw waveform. The learning process here bridges the gap

between unsupervised feature extraction and supervised classification by encouraging

the network to focus on the most informative parts of the input.

4. Contrastive learning: Contrastive approaches train the model to distinguish between

similar (positive) and dissimilar (negative) samples. By formulating the learning prob-

lem as one of discriminating between correct and incorrect pairings, contrastive meth-

ods encourage the network to learn representations that cluster similar audio events

together while pushing apart representations of different events. This method, em-

ployed by models such as Modified CPC (Riviere et al., 2020) and Wav2Vec2 (Baevski

et al., 2020), operates directly on raw waveforms using convolutional layers. By framing

the task as one of similarity learning, it leverages deep networks to capture both local

and global contextual cues.

2.5 Bioacoustics Features

In very recent years, researchers have begun to pre-train models directly on bioacoustics data,

marking a departure from earlier approaches that relied on the transferability of speech and

general audio representations. While the previous sections described handcrafted features,

deep learning models, and self-supervised techniques developed primarily on human speech

or large-scale general audio datasets, direct pre-training on bioacoustics aims to capture

species-specific acoustic patterns and other biological nuances.

One of the first and most comprehensive approaches in this domain is the AVES model family

(Hagiwara, 2023a), which trains using HuBERT’s architecture but on animal vocalizations

instead of human speech. The AVES models are pre-trained using a masked-prediction task

on a mixture of publicly available audio datasets—including FSD50K (Fonseca et al., 2021),

AudioSet (Gemmeke et al., 2017), and VGGSound (H. Chen et al., 2020), thus exposing the

model to a diverse range of bioacoustic signals.
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2.6 Feature Extraction and Classifiers

Many of the networks described earlier are used in this thesis in their frozen, pre-trained

form to leverage the robust representations they have already learned from large-scale data.

Freezing these networks not only reduces computational and data requirements during our

experiments, but also allows us to focus on evaluating the saliency of these representations,

by training a separate classifier head without altering the underlying network or the extracted

features. Figure 2.8 illustrates this pipeline: an input audio signal s is passed through the frozen

feature extractor F to obtain a feature vector x ∈RD . It can be feature embeddings averaged

on the temporal axis, or a single feature vector obtained as handcrafted representations. This

vector then serves as input to a classifier head, with parameters θ, which is trained with

backpropagation to predict the class label ŷ .

Figure 2.8 – Feature extraction and classification pipeline of a single layer.

By freezing the feature extractor, we retain the broad, domain-relevant information learned

during pre-training, while training the classifier to the specific downstream task at hand.

In addition to using deep learning-based classifiers such as linear layers and MLPs (see

Section 2.1), we also explore traditional machine learning classifiers. These methods are based

on well-established statistical principles, operate independently of deep learning frameworks.

Furthermore, unlike deep learning models, which typically require large amounts of data,

these can perform effectively even on smaller datasets. The following traditional ML classifiers

were used in our experiments:

• Support Vector Machines (SVMs) operate by first mapping input data into a high-

dimensional feature space, in which the decision boundary can be represented as a

hyperplane. Then, they identify the optimal hyperplane by maximizing the margin

between the positive and negative classes. Initially developed as the maximum mar-

gin classifier (V. N. Vapnik and Lerner, 1963), the method evolved into support vector

classifier or soft-margin SVM through the introduction of a soft margin (Cortes and
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V. Vapnik, 1995). It further advanced to support vector machines by incorporating kernel

methods (Boser, Guyon, and V. N. Vapnik, 1992), enabling non-linear boundaries, and

subsequently generalized to multi-class classification framework (C.-W. Hsu and Lin,

2002).

• Decision Trees: Decision trees partition data by successively splitting it based on feature

values, using measures such as Gini impurity or information gain, to arrive at a final

decision at the leaf nodes. Building on this concept, Random Forests (RF) create an

ensemble of decision trees by training each on random subsets of data and features,

with the final prediction determined by aggregating the individual trees’ votes (Breiman,

2001). AdaBoost (AB), in contrast, constructs a sequence of simple decision trees

(often shallow ones known as decision stumps) where each subsequent tree focuses on

correcting the errors made by its predecessors (Freund and Schapire, 1997). Together,

these ensemble methods demonstrate how combining multiple models can lead to

more robust and accurate predictions than any single decision tree alone.

2.7 Classification Evaluation Metrics

A classification model can either correctly classify a sample in its actual class, or it can incor-

rectly predict it to be in another class. When comparing the predicted class with the ground

truth, we can obtain true positives (TP), true negatives (TN), as well as, false positives (FP) and

false negatives (FN). Based on these, on can compute additional metrics, as given below:

• Accuracy: The proportion of correctly classified samples over the total number of

samples. This metric provides a general measure of a model’s overall performance.

ACC = T P +T N

T P +T N +F P +F N
(2.10)

• Precision: The ratio of true positive predictions to the total number of positive predic-

tions made by the model. It reflects the model’s ability to avoid false positives.

P = T P

T P +F P
(2.11)

• Recall: Also known as sensitivity or the true positive rate (TPR), recall is the ratio of true

positive predictions to the total number of actual positive instances. It indicates how

effectively the model identifies all relevant cases.

R = T P

T P +F N
(2.12)

• F1: The harmonic mean of precision and recall. The F1 score balances both metrics to
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provide a single measure that accounts for both false positives and false negatives.

F1 = 2 ·P ·R

P +R
(2.13)

• AUC: The Area Under the Receiver Operating Characteristic (ROC) Curve. AUC mea-

sures the model’s ability to distinguish between classes across all possible classification

thresholds. It essentially gives a number to the ROC curves, which tell us the strength

of classification rates in numbers. A ROC-AUC curve can be visualized by plotting a

classifier’s type TPR against its FPR, as shown in Figure 2.9a). We ideally want the ROC

curve to be as close as possible to the ideal (0,1) point, and thus the AUC to be as close

to 1 as possible.

• Confusion Matrix: allows one to visualize the accuracy of a model’s classifier by com-

paring its predictions against the ground truths for each class. Figure 2.9b) shows what

an ideal normalized confusion matrix would look like.

• UAR: Unweighted Average Recall is the mean recall calculated across all classes, treating

each class equally. This metric is particularly useful in scenarios with imbalanced class

distributions, and is therefore extensively used throughout this thesis.
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Figure 2.9 – Left: Sample ROC curve and its corresponding Area Under the Curve (AUC). The diag-
onal baseline represents a ‘line of no-discrimination’, and the (0,1) spot is the ideal classification
point. Right: Ideal confusion matrix of 4 classes. The diagonal and off-diagonal cells respectively
represent the model’s normalized correct and incorrect class predictions rates.

2.8 Summary

This chapter provided an overview of the theoretical deep learning foundations as well as

various speech and audio representations, which form the basis of this thesis. We began first

by reviewing key deep learning concepts, including fundamental building blocks such as
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linear layers and multilayer perceptrons, and progressed to more advanced architectures such

as convolutional neural networks and Transformers. We then examined both handcrafted

and learned representations of speech and audio signals, highlighting how deep learning and

self-supervised approaches can automatically extract informative features without explicit

knowledge-driven design. We also introduced a common pipeline for feature extraction, em-

phasizing how frozen pre-trained models can be leveraged for downstream tasks with minimal

additional training. Lastly, we listed traditional machine learning methods to complement the

neural network-based classifiers, and concluded with an overview of the evaluation metrics

used to assess model performance. In the next chapter, we will take a deeper look at the actual

animal vocalizations datasets and the bioacoustics tasks we aim to solve.
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This chapter presents an in-depth overview of the types of animal vocalizations studied in

this thesis and their associated bioacoustic classification tasks. Building on the theoretical

foundations and representation learning techniques discussed in Chapter 2, we now focus on

real-world bioacoustics data from non-human primates, marine mammals, and domestic dogs.

These species provide acoustically diverse vocalizations that are well-suited for evaluating

the transferability of speech-based representations across taxa. The tasks addressed include

multi-class classification, such as call-type identification (CTID), caller identification (CLID),

and, where applicable, sex classification (SID). Through these datasets, we aim to explore the

unique acoustic properties of different animal vocalizations and demonstrate the potential

of modern machine learning techniques for decoding animal vocal communication. We

clarify that this thesis focuses only on vocalization-based animal communication, i.e. signals

produced by a vocal tract, and does not investigate other communication modalities such as

gestures or non-vocalization sounds.

Table 3.1 – Dataset descriptions and statistics. L denotes the total length [minutes], S the number
of samples, ntask the number of classes, SR the sampling rate [kHz], µ the median length [ms].

Dataset Animal S L SR nCTID nCLID nSID µ σ

IMV Marmosets 72,920 464 44.1 11 10 – 127 375
Bosshard Marmosets 13,808 37 300 7 8 2 117 181
Wierucka Marmosets 4,901 138 125 12 8 2 1,037 1,687
Watkins Mammals 1,697 295 – 32 – – 1,701 71,245
Abzaliev Dogs 8,034 137 48 14 80 2 655 1313

Table 3.1 presents a statistical summary of the used datasets. Section 3.1, 3.2, and section 3.3

provide an overview of the marmoset, marine mammal, and dog datasets, respectively, along

with our motivation for studying them.
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Chapter 3. Animal Vocalizations

3.1 Marmosets

Marmosets are a central focus of this thesis, as their vocal behaviour provides a particularly

valuable model for studying the evolutionary origins of human language. Their relevance

to comparative communication science makes them especially well-suited for exploring

how vocal signals encode socially and biologically meaningful information across species.

Section 3.1.1 further motivates this focus and provides a detailed survey on marmoset call

analysis.
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Figure 3.1 – Marmoset vocalizations by call-type.

3.1.1 Surrogate Models for Non-Human Primate Communication

Common marmosets (Callithrix jacchus) have recently gained prominence as a valuable

research model among non-human primates. This is primarily due to their exceptional vocal

abilities, which are rooted in their highly complex social behavior and cooperative breeding

system (Eliades and Miller, 2017; Burkart et al., 2022). They possess extensive vocal repertoires

used in various social situations (J. A. Agamaite et al., 2015; Bezerra and Souto, 2008), and their

vocalizations have the capacity to encode a wide range of information, such as population,

group affiliation, sex (Norcross and Newman, 1993), dialect (Zürcher and Burkart, 2017), and

even individual caller identity (BS, DHR, and CK, 1993; Newman JD, 1992; Rukstalis and

French, 2005; Phaniraj et al., 2023). These vocalizations are not limited to simple tonal signals

but also encompass complex calls with multiple frequency components, some of which are

within the ultrasonic range (J and JAM, 2018), and are expressed over a number of social and

emotional states (Epple, 1968; R. Seyfarth and D. Cheney, 2003).

Moreover, marmosets have been observed to exhibit remarkable vocal adaptability. They

can alter the duration (Brumm et al., 2004), intensity (Brumm et al., 2004; Eliades and X.

Wang, 2012; Pomberger, Löschner, and Hage, 2020), complexity (Pomberger et al., 2018), or

timing (Roy et al., 2011) of their calls, even when faced with disruptions in their environment

that occur after the initiation of a call (Pomberger, Löschner, and Hage, 2020). These vocal

characteristics align them closely with human speech properties, such as care-giving to infants,

turn-taking (D. Takahashi, Fenley, and A. Ghazanfar, 2016), and categorical perception of

sounds (Osmanski and X. Wang, 2023), and make them into a well-suited surrogate model for

understanding the vocal communication of non-human primates among biologists (Worley

and al., 2014) and neuroscientists (Okano, Miyawaki, and Kasai, 2015).

While these properties make marmosets an intriguing subject for the study of communication

processes, they also pose a significant challenge when attempting to automate the analysis

of their vocalizations. In the literature, the automatic analysis of marmoset vocalizations,
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3.1 Marmosets

i.e. such as call-type, caller identity, or sex classification, has been conducted by leveraging

signal processing features alongside traditional machine learning classifiers. (Turesson et al.,

2016) compared different classification methods for marmoset call-type classification using

linear prediction coefficients as feature representation, and found that on a small data setup

of 30 samples per call-type, k-NN, SVM, and optimal path forest algorithms yielded better

performance than multilayer perceptron, Adaboost, and logistic regression. (Wisler et al.,

2016) investigated different feature representations, namely, audio features (statistics based

on energy entropy, signal energy, zero crossing rate, spectral rolloff, spectral centroid, and

spectral flux), mel-frequency cepstral coefficients (MFCCs), and Teager energy operator-based

features for marmoset vocalization and call-type detection. On a synthetic dataset created by

taking a small set of calls and augmenting it with background noise and acoustic events, it was

found that feature-level combination led to better performance.

(Verma et al., 2017) investigated discovering different patterns in marmoset calls through

unsupervised learning. Specifically, they developed an HMM-based approach to segment

and cluster marmoset vocalizations into discrete units through multi-resolution and multi-

rate analysis of the signal. In (Y. Zhang et al., 2018), it was demonstrated that marmoset

vocalizations and call-types can be better detected and classified by feeding statistics of log-

mel filter bank energies as input to recurrent neural networks (RNNs), when compared to

SVM or multilayer perceptrons. In the scenario of analyzing recordings obtained from a

pair of marmosets, (Oikarinen et al., 2018) investigated a deep learning approach where a

spectrogram was fed as input to a convolutional neural network to jointly perform vocalization

detection, call-type classification, and caller detection. It was found that joint modeling

yielded better performance than training systems individually for each task in this scenario.

Highly Comparable Time-Series Analysis (HCTSA) features have also been used to model

source (caller) identification through an Adaboost-based hierarchical approach for marmosets

(Phaniraj et al., 2023), as well as for 14 mammalian species (Wierucka et al., 2024).

Recent studies have begun exploring the self-supervised learning (SSL) framework, which

leverages unlabeled data by creating surrogate labels from the data’s inherent structure. This

has led to works investigating birdsong detection (Saeed, Grangier, and Zeghidour, 2021a)

and bioacoustic event detection (Bermant, Brickson, and Titus, 2022a) through contrastive

pre-training. However, systematic investigations of self-supervised learning for animal vocal

communication remain largely limited. In particular, their potential transfer from human

speech to marmoset vocalizations holds great promise for uncovering cross-species represen-

tational similarities that may shed light on the evolutionary origins of language.

3.1.2 Datasets

• InfantMarmosetsVox (IMV) (Sarkar and Magimai.-Doss, 2023) is an extended version

of the dataset used in the study on marmoset call type discrimination by (Y. Zhang

et al., 2018). The dataset consists of 72,920 audio segments representing 11 different
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call-types, and amounting to 464 minutes of vocalizations. The data contains 350 files of

precisely labeled 10-minute audio recordings across all ten caller classes. The audio was

recorded from five pairs of infant marmoset twins, each recorded individually in sound-

proofed rooms at 44.1 kHz SR, without communication with other marmoset pairs or

the experimenters. The audio recordings were manually labeled by an experienced

researcher using the ‘Praat’ tool. For each vocalization, the start and end time, call type,

and marmoset identity are been provided. Although a large dataset by bioacoustics

standards, each segment is predominantly short, at a median length of 127 ms. The

spectral range of the calls is mostly centered at around 7-8 kHz, although there is still

some information present above 16 kHz (Sarkar and Magimai.-Doss, 2024). The calltypes

are entitled peep (pre-phee), phee, twitter, trill, trillphee, tsik tse, egg, pheecry (cry),

trllTwitter, pheetwitter, and peep calls.

• The Bosshard (Bosshard, 2020; Bosshard et al., 2024) dataset consists of 102 labeled

10-min focal audio recordings of common marmoset calls recorded in six behavioural

contexts. A pair of marmosets was either separated or in the same enclosure, with

preferred food either freely available for the focal individual or not. Each of the 8

subjects was recorded on 16 separate occasions. Most of the calls were given in bouts as

holistic single call units, and thus, a call-type unit was defined as a call bout with call

elements which were not further apart than 0.5s, as per existing literature (J. A. Agamaite

et al., 2015; Snowdon and Elowson, 2001). We only used the segments labeled as single

call elements, i.e. not split up in bouts, to avoid data overlap and duplication. The

dataset consists of 7 calls, namely alarm, ek, food, phee, trill, tsk, and twitter. The audio

recordings were manually annotated by using Avisoft SASLab Pro (Avisoft Bioacoustics,

Feb. 2017) to narrowly label the start and end of each call-type. The data was collected

under Swiss legislation and licensed by Zurich’s cantonal veterinary office (license ZH

223/16 and ZH 232/19).

• The Wierucka dataset was collected from 6 target adult common marmosets, 3 male and

3 female, housed at the University of Zurich. Two additional non-target individuals were

also included in the dataset, summing to 8 individuals in total. The data consists of 12

calls classes: phee, trill, food call, tsk, low tsk (tsk with a peak frequency of approximately

7-9 kHz), twitter (sequence), ek, phee sequence (multiple phees), low tsk sequence (mul-

tiple low tsks), ek sequence (multiple eks), food call sequence (multiple food calls). All

procedures were done in accordance with Swiss legislation and were licensed by Zurich’s

cantonal veterinary office (license ZH223/19). For each recording, two individuals (one

male and one female) were placed in adjacent wire cages and recorded simultaneously

in 15-minute intervals with two UltraSoundGate 116H recorders coupled with an Avisoft

CM16/CMPA condenser microphone (Avisoft Bioacoustics, Germany), each set to a dif-

ferent gain to capture both low and high amplitude calls with a sampling rate of 125kHz.

A total of 12 recordings, spread over 7 months, were made for each target individual.

Caller identity was labeled in real time using Avisoft-RECORDER USGH (Avisoft Bioa-

coustics, Germany). The labelling of the calls’ exact start and end points was carried out
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through a visual examination of the spectrograms. For inclusion in subsequent analyses,

calls needed be distinctly visible on the spectrogram, devoid of any interference from

other calls, and readily classifiable into specific call-type categories.

3.2 Marine Mammals

Marine mammal vocalizations are characterized by a wide range of acoustic features due to the

diverse species and their varied communication contexts. These vocalizations often exhibit

significant variation in frequency content and temporal structure, reflecting the adaptations

of these animals to their underwater environments.

The Watkins dataset (Sayigh et al., 2017) contains the recordings of different marine mam-

mals, such as specific dolphins, whales, and seals. We chose Watkins for its multi-species

vocalizations, rich acoustic variety, and high variance in segment lengths (figure 5.1). It has

been commonly used for bioacoustic benchmarking, particularly for evaluating modern deep

learning models (Hagiwara, 2023a; Hagiwara et al., 2023b). We chose the ‘best of’ cut of the

original dataset, a selected subset from the original 15,000 samples in total, deemed to be of

higher sound quality and to contain less noise. The final dataset contains 1697 vocalization

segments from 32 different species, totalling to 295 minutes, with a median length of 1701s.

The sampling rate (SR) varies according to the recorded species.

3.3 Dogs

Dog vocalizations offer another intriguing domain for bioacoustic research, where subtle

differences in bark types and other sounds can convey distinct emotional states or intentions.

In our study, we focus on datasets that capture a range of canine vocal behaviors—from

aggressive or fearful barks to those associated with excitement or owner interaction.

Abzaliev dataset is novel dog dataset (here referred to by the first author’s name) consisting

of 8,034 total vocalizations (Abzaliev, Perez-Espinosa, and Mihalcea, 2024). It contains 14

different call-types, ranging from normal, aggressive, fearful, and playful barks at strangers (IDs

0–3), to vocalizations related to owner interaction (4–5) and non-stranger/non-play sounds

(6). It also contains postive or negative whines (7–8) and growls (9–10), barks associated with

sadness or anxiety (11), and excitement upon the owner’s arrival home (12). The recordings

originate from various dog breeds, including Chihuahuas, French Poodles, and Schnauzers.

The data was recorded at 48 kHz SR from a microphone, and followed a protocol designed

and validated by experts in animal behavior. The dog vocalizations were induced by exposing

the dogs to different types of external stimuli, with the participation of the owner and/or

experimenter. We discard all the segments labeled as non-dog sounds, such as TV, cars, and

appliances.
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3.4 Summary

Together, these animal datasets provide the foundation for investigating how self-supervised

representations learnt from human speech can be transferred to decode non-human vocal

communication. In the following chapter, we begin this investigation with a proof-of-concept

study on caller identity detection in marmosets, evaluating how well different SSL models can

encode individual animal identity information from their vocalizations.
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Publication Note

The material presented in this section is adapted from the following works:

• E. Sarkar and M. Magimai.-Doss (2023). “Can Self-Supervised Neural Represen-

tations Pre-Trained on Human Speech distinguish Animal Callers?” In: Proc. of

Interspeech, pp. 1189–1193.

Supplementary Material

• Source Code: https://github.com/idiap/ssl-caller-detection.

4.1 Introduction

The study of animal vocalizations, or bioacoustics, has progressed significantly in recent

years due to approaches inherited from machine learning and deep learning (Stowell, 2022a).

However, most of these are supervised approaches, which require large amounts of labeled

data, which is often scarce in bioacoustics. Self-supervised representation learning (SSL) has
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emerged as a powerful tool in speech processing to leverage unlabeled data by pre-training

models to solve pretext tasks using surrogate labels created from the structure inherent to the

data itself. Given an acoustic waveform signal as input, an SSL model uses said labels and the

pretext task to train and iteratively optimize its learning objective. The information encoded

in the representations can vary depending on the selected learning objective, which can be

roughly categorized into generative and discriminative approaches. Generative methods try

to either reconstruct masked acoustic frames (A. H. Liu, Chung, and Glass, 2021; A. T. Liu

et al., 2020; A. T. Liu, S.-W. Li, and Lee, 2021), or predict future frames using an auto-regressive

framework (Chung et al., 2019; Chung, Tang, and Glass, 2020). Discriminative approaches

either learn by contrastive learning, i.e. discriminating positive samples from negative ones

(Riviere et al., 2020; Baevski et al., 2020), or else by predicting pseudo-labels of discrete masked

regions (W.-N. Hsu et al., 2021; S. Chen et al., 2022; Baevski et al., 2022) or the output of specific

hidden layers (H.-J. Chang, S.-w. Yang, and Lee, 2022). The representations learnt from the

chosen SSL model can then be further fine-tuned to a wide range of speech downstream tasks,

which have yielded state-of-the-art results on the SUPERB benchmark (S.-w. Yang et al., 2021).

Self-supervised learning only utilizes the intrinsic structure of unlabeled data without any re-

liance on domain-specific knowledge, such as human speech production, to capture essential

information about the input data, and extract high-level representations in an embedding

space. Thus, the utility of such representations may not only be restricted for modeling human

speech, as demonstrated by recent works on other acoustic domains such as music (Wu et al.,

2021; Zeng et al., 2021) and biomedical signals (Banville et al., 2021; Banville et al., 2019).

Given this understanding, and the fact that both humans and animals have a voice production

system, our objective is to investigate the cross-transferability of representations learned from

human speech for analyzing animal vocalizations.

To that end, we conduct an animal caller detection study on Marmoset (Callithrix jacchus)

vocalizations, and demonstrate its applicability through means of eleven different SSL models

pre-trained with different pretext tasks. Our study also aims to provide practical benefits to

biologists and ethologists by providing a framework to distinguish individual identities within

the same animal species, which is an understudied topic in bioacoustics and a much harder

problem than across-species classification (Stowell, 2022a). Some previous works has explored

birdsong detection (Saeed, Grangier, and Zeghidour, 2021b) and bioacoustic event detection

(Bermant, Brickson, and Titus, 2022b) using contrastive learning, however, the generalization

of SSL models to animal vocalizations has largely remained unexplored. To the best of our

knowledge, no previous study has looked into caller detection by utilizing the embedding

space learnt by pre-training on human speech.

4.2 Study Design

This section presents the study design to systematically investigate the cross-transferability

of representations learned from human speech for animal caller detection. Specifically, we
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design a study with the following research questions:

1. How discriminative are the embedding spaces of SSL models pre-trained on human

speech?

2. Can we systematically detect individual Marmoset callers using said embedding space?

The remainder of the section presents the dataset, research framework, and selection of SSL

models for our investigations.

4.2.1 Dataset

For our study, we requested and used the marmoset dataset collected and labeled by (Y.-J.

Zhang et al., 2018), defined as InfantMarmosetsVox (IMV) in Chapter 3. It contains audio

recordings of eleven different marmoset calltypes, such as Twitters, Phees, and Trills, manually

annotated using the Praat tool. The audio was recorded from five pairs of infant marmoset

twins, each recorded individually in two separate sound-proofed recording rooms at a sam-

pling rate of 44.1 kHz. The start and end time, call type, and marmoset identity of each

vocalization are provided, labeled by an experienced researcher. The data contains 350 files

of precisely labeled 10-minute audio recordings across all caller classes. We downsample

the data to 16 kHz, remove all segments labeled as ‘silence’ and ‘noise’, and only keep the

vocalization segments, amounting to a total of 464 minutes over 72,921 vocalization segments,

with a mean and median length of 381±375 ms and 127 ms respectively. Figure 4.1 shows

the imbalanced distribution of vocalizations per caller, color coded by calltype. We divide

the entire data into training, validation, and test sets, named Train, Val, and Test respectively,

following a 70:20:10 split. This distribution allows us to train models on a sufficiently large

dataset while ensuring that we have sufficient data for model evaluation and validation. Train

is used to train the models, Val to tune hyperparameters, and Test to evaluate the trained

models on unseen data.
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Figure 4.1 – Vocalization per callers grouped by call-type.
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4.2.2 Caller-Groups
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Figure 4.2 – Log distribution of vocalization lengths for callers 1–10 represented in different colors.
The mean and median are calculated over the entire dataset.

For our study, neural embeddings are extracted from the pre-trained SSL models by giving

the Marmoset vocalizations as input for the purpose of caller detection. The log distribution

of vocalization lengths in this dataset, depicted in Figure 4.2, exhibits a bimodal structure

consistent with prior findings (Huang et al., 2022; D. Y. Takahashi, Narayanan, and A. A.

Ghazanfar, 2013). However, the same figure also illustrates that the vocalization segments

in this dataset are predominantly short, with a median segment length of around 125 ms.

Considering the lack of prior knowledge for this task, we took inspiration from i-vector and

x-vector based speaker verification systems, where utterance lengths considerably longer than

a short-term window size are modeled to achieve high performance (Dehak et al., 2011; Snyder

et al., 2018a). More precisely, in order to effectively model each caller while accounting for the

low vocalization segment length as well as to explore the acoustic variations within each caller,

we first split all the vocalization embeddings by caller. Then, in order to maintain the chosen

70:20:10 split ratio of our data sets, we divide the embeddings of each caller sequentially into

a fixed number of groups, hereafter referred to as ‘caller-groups’. We set the number of said

groups to 100 for Train, and proportionally scale for Val and Test. This results in a total of 1000,

280, and 140 groups across all callers for Train, Val, and Test sets, respectively.

4.2.3 Embedding Spaces

We carry out caller discrimination analysis and caller detection studies by computing the first

and second order statistics of the SSL embeddings in the caller-groups. For this purpose, we

select eleven pre-trained SSL models from the SUBERB leaderboard (S.-w. Yang et al., 2021)

based on the different pretext tasks seen in Section 5.1, and use the S3PRL toolkit (S.-w. Yang

et al., 2021) to extract the embeddings. Table 4.1 lists the chosen models, along with their

number of parameters P in millions, and the dimension D of the last layer embedding. All the

models have been pre-trained on the LibriSpeech (LS) corpus, except Modified-CPC which is

pre-trained on the Libri-Light (LL) corpus.
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Table 4.1 – Selected pre-trained SSL models on human speech. P indicates the number of parame-
ters in millions, and D corresponds to the dimension of the last layer embedding.

Model Corpus P D Pretext Obj.

APC (Chung et al., 2019) LS 360 4.11 512 Autoreg. Rec.
VQ-APC (Chung, Tang, and Glass, 2020) LS 360 4.63 512 Autoreg. Rec.

NPC (A. H. Liu, Chung, and Glass, 2021) LS 360 19.38 512 Masked Rec.
Mockingjay (A. T. Liu et al., 2020) LS 100 21.33 768 Masked Rec.
TERA (A. T. Liu, S.-W. Li, and Lee, 2021) LS 100 21.33 768 Masked Rec.

Mod-CPC (Riviere et al., 2020) LL 60k 1.84 256 Contrastive
Wav2Vec2 (Baevski et al., 2020) LS 960 95.04 768 Contrastive

Hubert (W.-N. Hsu et al., 2021) LS 960 94.68 768 Masked Pred.
DistilHubert (H.-J. Chang, S.-w. Yang, and Lee, 2022) LS 960 27.03 768 Masked Pred.
WavLM (S. Chen et al., 2022) LS 960 94.38 768 Masked Pred.
Data2Vec (Baevski et al., 2022) LS 960 93.16 768 Masked Pred.

4.3 Caller Discrimination Analysis

This section presents a discrimination analysis of SSL embedding spaces for the purpose of

marmoset caller distinction. For this study we only use the Train portion of the data.

In order to conduct this analysis on our data, we first model the embedding spaces of each

caller-group with a multivariate Gaussian distribution N (µ,Σ) with mean µ and diagonal

covariance matrix Σ, resulting in a total of 100 multivariate Gaussians for each caller.

Subsequently, we compute the inter-caller and intra-caller distances by comparing the multi-

variate Gaussian distributions, as illustrated in Figure 4.3. Specifically, for inter-caller distances,

we calculate a total of 100 ·100 pairwise distances for each pair of callers. For intra-caller

distances, we compute a total of
(100

2

)
distances. To compute the distance between the the

Gaussians of a pair of caller-groups, we use two measures, namely the Kullback-Leibler (KL)

divergence and Bhattacharyya distance, both of which produce distances in the range of

[0,+∞). The latter provides a symmetric measure while the former does not.

Equations 4.1 and 4.2 respectively provide the formulas for calculating the KL divergence DKL

and Bhattacharyya distances DBC between two multivariate Gaussian distributions N f and

Ng (Durrieu, Thiran, and Kelly, 2012; Bhattacharyya, 1943). In the case of the KL divergence,

the mean vector µ, covariance matrix Σ, determinant |Σ|, and dimensionality d are utilized.

Meanwhile, the Bhattacharyya distance uses the arithmetic mean of the covariance matrices

Σ f and Σg as Σ.

DKL( f ||g ) =1

2

(
log

|Σg |
|Σ f |

+Tr(Σ−1
g Σ f )+ (µ f −µg )TΣ−1

g (µ f −µg )−d
)

(4.1)
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Figure 4.3 – We sort the Train embeddings by caller identity (CID1–10), and then split each of
those into caller-groups (G1–100). We then model each caller-group’s embedding spaces of with a
multi-variate Gaussian distribution N (µ,Σ), and calculate the intra and inter-group distances.

DBC ( f ||g ) =1

8
(µ f −µg )TΣ−1(µ f −µg )+ 1

2
log(

|Σ|√|Σ f ||Σg |
) (4.2)

Once we have computed the distribution of distances for all the SSL embedding spaces, we

can visualize them through a heatmap. Figure 4.4 shows the distance matrix for WavLM’s

embedding space, where the diagonal entries represent the intra-caller distances and the

off-diagonal correspond to the inter-caller distances. In an ideal scenario, one would expect

the intra-class distances between distributions to be smaller than the inter-class ones, which

is not entirely the case in our results. Nevertheless, for callers with a larger amount of available

data, we can observe good discrimination when compared to callers with a lower amount of

data, as in the case of Caller 1 and Caller 3 vs. Caller 8. We observe that the distances exhibit

similar patterns for all other SSL embeddings, which suggests these embeddings provide

similar information for the caller discrimination task. Taken together, the analysis suggests

that the SSL embeddings do carry information for distinguishing marmoset callers to a certain

extent. However, accomplishing this simple with a linear classifier may be a challenging task.
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Figure 4.4 – Distance matrix of callers in WavLM’s embedding space. The off-diagonal values
represent the average inter-caller distances, while the diagonal entries the average intra-caller
distances. Darker regions indicate higher dissimilarity.

4.4 Caller Detection Study

4.4.1 Classifiers

Table 4.2 – Search space to find optimal hyperparameters.

Classifier Hyperparameters Search space

RF

# Estimators [50, 500, 1000, 2000]
Max # Features [‘auto’, ‘sqrt’, ‘log2’]
Criterion [‘gini’, ‘entropy’]
Min samples leaf [1, 2, 4]

AB
Learning rate [0.1, 0.2, 0.5, 1]
Algorithms [SAMME, SAMME.R]
Max # Estimators [50, 500, 1000, 2000]

SVM
C 1e[-5, -4, -3, -2, -1, 0]
Kernel [RBF, Linear, Polynomial]
Gamma [‘scale’, ‘auto’]

LSVM
C 1e[-5, -4, -3, -2, -1, 0]
Max # Iterations 10000
Class weights [‘balanced’, ‘None’]

Based on the insights of our caller discrimination analysis, we proceed to classify the statistics

computed over the caller-groups for the task of caller detection in a 5 fold cross-validation (CV)

framework. We concatenate the mean and variance of the Gaussians into a single functional

vector, and use them as our fixed-length representations for classification.

We use Random Forest (RF), Ada Boost (AB), Support Vector Machines (SVM), and Linear SVM

(LSVM) algorithms to classify the computed functional vectors. The difference between Linear
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SVM and SVM with a linear kernel lies in the former’s utilization of a squared hinge-loss, while

the latter employs a regular hinge-loss.

To determine the most robust classification technique, we employ the grid search methodology

with F1-Macro score as the optimization criterion, integrated into the Scikit-learn toolkit. We

tune the hyperparameters for each fold, across the train and validation sets over the search

space given in Table 4.2.

4.4.2 Evaluation Metrics

To evaluate the effectiveness of our proposed approach for the given task, we present the

area under the curve (AUC) scores, which provide a evaluation of the performance of all

the classifiers in correctly classifying the positive instances against negative. For SVM it is

computed pairwise using a ‘one-vs-one’ methodology, while for the other classifiers it is

calculated in a binary ‘one-vs-rest’ framework, by averaging the AUC scores for each class

against all others.

4.4.3 Results and Discussion

Table 4.3 – Macro AUC scores [%] on Test with 5-fold CV for caller detection task using different
classifiers.

Model AB LSVM RF SVM

APC 71.44 65.18 70.89 79.16
VQ-APC 71.60 65.58 70.04 78.45

NPC 72.61 66.27 71.50 77.32
Mockingjay 72.39 64.43 71.75 78.44
TERA 70.34 64.57 68.43 74.03

Mod-CPC 72.62 64.05 69.81 75.96
Wav2Vec2 74.41 63.94 70.18 75.85

Hubert 71.71 64.14 70.17 75.64
DistilHubert 70.77 65.11 70.34 76.26
WavLM 73.97 65.32 70.74 78.60
Data2Vec 69.81 62.58 68.23 73.04

Average 71.97 64.66 70.19 76.61

Table 4.3 summarizes the performance of the different classifiers on all the embedding spaces.

The results show that SVM significantly outperforms the other classifiers across all embedding

spaces. The decision tree-based ensemble methods, AdaBoost and Random Forest, exhibit

comparable performance for most models, and consistently outperform Linear SVM. This

suggests that the relationship between the features in the embedding space and their labels is

likely to be complex and non-linear, which can be modelled by ensemble methods to some
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degree, but not to the extent of non-linear SVMs.
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Figure 4.5 – a) ROC curves per caller class (CID) for WavLM embeddings using SVM on one fold
of Test. b) Macro average ROC curves of all models on Test using SVM over all folds. Shaded
areas represent ± 1 std over the k-folds. c) Model size against performance. Model pre-training
objective denoted as: • Masked prediction. • Autoregressive reconstruction. • Contrastive •
Masked reconstruction.

Figure 4.5a) shows the caller classification performance in distinguishing a positive class from

the negative instances using SVM on a single Test fold. We can observe that all callers are

systematically distinguished in this binary framework, including the classes with a low amount

of data (CID 6–8).

Figure 4.5b) visualizes SVM’s average performance for each embedding space across the

5 folds, with the shaded areas representing ± 1 std. The results clearly demonstrate that

the embedding spaces of all models are capable of successfully differentiating Marmoset

callers, indicating that SSL models pre-trained on human speech data can generate salient

representations capable of distinguishing animal vocalizations regardless of the pre-training

criterion.

Figure 4.5c) illustrates the relationship between the number of parameters and classification

performance for each embedding space. The plot is divided into four quadrants to highlight

differences in performance. Interestingly, WavLM’s embedding space is found to be more

separable than the other masked prediction models, indicating that its masked speech de-

noising task may be more effective in capturing animal caller identification information than

Hubert’s masked speech modeling. Surprisingly, both auto-regressive reconstruction based

models perform exceptionally well with significantly fewer parameters. These findings suggest

that while all pre-training criteria can yield competitive performance, some may be more

efficient than others, allowing models with simpler architectures and fewer parameters, such

as APC and AQ-APC, to perform comparably to larger models like WavLM. Finally, we observe

that Data2Vec is not as successful as the other masked prediction based models, despite the

same number of pre-training hours, corpus and comparable number of parameters. While it

has shown to outperform the other masked prediction models in human speech, it seems to

clearly learn weaker representations for the task of domain adaptation.
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4.5 Conclusions

This section investigated the applicability of self-supervised representations, pre-trained on

human speech through different approaches, to analyze vocalizations in the bioacoustics

domain. To that end, we conducted and validated two lines of investigation on Marmoset calls

in a caller detection framework.

We first conducted a caller discrimination analysis study on the training data to examine

the linear separability of eleven pre-trained embedding spaces by splitting the training data

into caller-groups, and then calculating the intra-group and inter-group distances through a

multivariate Gaussian distribution framework. The results showed that all spaces exhibited

similar distance patterns, and that distinguishing marmoset callers is possible with a linear

classifier but only to a certain extent.

For our second investigation, we conducted a caller detection study to analyze whether the

embedding spaces of said caller-groups can be systematically distinguished by class. We

trained four classifiers to predict the classes of the caller-groups in 5 fold cross-validation

framework. The results show that we can effectively distinguish all Marmoset callers, including

those with low data, in a binary classification framework. The results also show that non-linear

SVMs are able to most accurately model the non-linear relationship between the features of

the embedding space. Finally, we observe that although all embedding spaces seem effective

at the caller detection task, some learning objectives may be more efficient than others.

In summary, our research demonstrates that self-supervised representations pre-trained on

human speech can effectively classify vocalizations in the bioacoustics domain for tasks such

as Marmoset caller detection, even without fine-tuning. These findings can greatly benefit

bioacoustics researchers looking to distinguish individual identities within a specific species

in their acoustic data. Additionally, we anticipate that further fine-tuning of these models

on relevant bioacoustics downstream tasks can improve performance. Therefore, we plan

to investigate the impact of model size on performance after fine-tuning, and also explore

adapting the embedding spaces for other tasks like call-type classification in our future work.
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5.1 Introduction

The advancements in human speech processing have accelerated and impacted research in

non-human communication, such as bioacoustics, i.e. the study of animal sounds. However,

in the existing works, there are three main limitations. First, most of the studies have been

carried out on small datasets. Second, these studies have been conducted on datasets intended

for specific scenarios. Due to a lack of validation, it is unclear whether the methods studied on

one dataset would scale to another. Third, there is limited prior knowledge about what type

of information is relevant for different call analysis tasks. There is a need to overcome these

limitations to advance the development of automatic analyses of marmoset vocalizations.

Chapter 4 addressed this gap through a proof-of-concept study on a single dataset and a

binary caller detection task. The present chapter extends that investigation with a specific

focus on feature representations for automatic marmoset call analyses, where we investigate

three prominent feature representation methods, namely, (a) hand-crafted features, (b) self-

supervised learning-based representations, and (c) end-to-end acoustic modeling, on three

different marmoset call datasets and three different tasks (call type, caller identity, and caller

sex classification).

This chapter is organized as follows. Section 5.2 presents the different datasets, tasks, and

investigated feature representations. Section 5.3 and 5.4 present the studies and analysis of

the results respectively. Finally Section 5.5 concludes the chapter.

5.2 Methodology

5.2.1 Datasets and Tasks

We conduct investigations on three different marmoset datasets, namely the InfantMar-

mosetsVox (IMV), Bosshard, and Wiercka datasets, denoted in this chapter as D1, D2, and

D3, respectively. D2 and D3 contain vocalizations produced by adult individuals, while D1

originates from infant marmosets (Sarkar and Magimai.-Doss, 2023). Consequently, D1 is

expected to encompass different call types, likely characterized by higher frequencies com-

pared to those in D2 and D3. Furthermore, D2 and D3 are gathered from the same colony,

while D1 was obtained from a different one. All the datasets consist of audio recordings of

marmosets vocalizations segments, collected and hand-labeled with the start and end time

by experienced researchers. In addition to call-type and caller identity annotations of each

vocalization provided for all three datasets, D1 and D2 also include information about the sex

of the vocalizing individual. For more details regarding the datasets, the reader is referred to 3.

We discard any segments labeled as ‘silence’ and ‘noise’, and only keep the vocalization

segments. The log distribution of the vocalization lengths of the three datasets is presented

in Figure 5.1. We can observe that D1 has the shortest median vocalization length at 127 ms,

with D2 and D3 at 175 and 1037 ms respectively. Based on the given annotations, we define

multi-class tasks, specifically call-type, caller, and sex classification, henceforth referred to as
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Figure 5.1 – Log distribution of vocalization lengths per dataset. The medians are calculated over
the entirety of each dataset.

CTID, CLID, and SID respectively. Table 5.1 gives the number of vocalization segments S, their

total duration length L, the native sampling rates, as well as the number of classes nc for each

task across datasets.

Table 5.1 – S indicates the number of data samples, L the sum of all vocalizations segment
durations (in minutes), and SR the native sampling rate of the given data (kHz). ntask is the
number of classes of each task-dataset permutation.

D S L SR nCTID nCLID nSID

D1 73K 464 44.1 11 10 -
D2 14K 37 300 7 8 2
D3 5K 138 125 12 8 2

5.2.2 Feature Representations

We investigate the following feature representations:

1) Hand-crafted features: Highly Comparable Time-Series Analysis (HCTSA) is an interpretable

signal processing-based framework that has been demonstrated to be useful for diverse

time series application domains (Fulcher, Little, and Jones, 2013). In this framework, a set

of 7700 features are extracted by characterizing the signal by different time series analysis

methods, such as, linear correlation, modeling fitting (e.g., autoregressive moving average

analysis, GARCH), wavelet analysis, extraction of information theoretic measures, which

then is combined with feature selection to build statistical models for the end task. In the

literature, these features have been investigated for behavioural birdsong discrimination (Paul

et al., 2021), automated acoustic monitoring of ecosystems (Sethi, 2020), as well as marmoset

caller identification (Phaniraj et al., 2023). One of the challenges of HCTSA approach is

computational complexity and involves an evaluation of many similar features. In a recent

work, CAnonical Time-series CHaracteristics (Catch22) features, a subset of the HCTSA feature

set has been proposed which exhibit a strong performance across 93 real-world time-series

39



Chapter 5. Beyond Caller Identity: Decoding Marmoset Vocal Communication

classification problems, but are also minimally redundant (Lubba et al., 2019). In this work,

we investigate the Catch22 features, denoted as C22.

2) Pre-trained self-supervised learning (SSL) based features: Inspired from the recent study

presented in (Sarkar and Magimai.-Doss, 2023), we investigate the use of feature representa-

tions extracted from pre-trained SSL neural networks trained on human speech for marmoset

call analysis. We extend the investigations from caller detection to call type, caller ID and sex

classification. Furthermore, contrary to the previous work (Sarkar and Magimai.-Doss, 2023),

which focused only on the last transformer layer representation, in this work we investigate

representations obtained from all the transformer layers to gain insight which level of layer

representations are informative for marmoset call analysis.

3) End-to-end acoustic modeling: With advances in deep learning, acoustic modeling ap-

proaches have emerged in speech and audio processing where raw signal can be modeled

to learn task-dependent information from the signal in an end-to-manner with minimum

prior knowledge (Palaz, Collobert, and Magimai-Doss, 2013; Trigeorgis et al., 2016; Zazo et

al., 2016; Muckenhirn, Magimai.-Doss, and Marcel, 2018). Such approaches hold potential

for advancing marmoset call analysis, as they could help not only in addressing the lack of

reliable task-dependent prior knowledge challenge, but also in gaining insight into the task

relevant acoustic information learned by such trained networks through analysis (Mucken-

hirn, Magimai.-Doss, and Marcel, 2018; Muckenhirn et al., 2019; Palaz, Magimai.-Doss, and

Collobert, 2019). The insight gained could then be further validated through linguistic studies.

Motivated by these aspects, we investigate this approach.

A sub-challenge that arises when analyzing marmoset calls is the range of frequency informa-

tion to be modeled. More precisely, the fundamental frequencies (typically corresponding to

the peak frequency) of adult marmoset vocalisations span a range of 6-13 kHz, depending on

the call-type (J. A. Agamaite et al., 2015). However, as can be seen in Table 5.1, datasets are

collected at varying sampling frequencies. Furthermore, the SSL neural networks are typically

pre-trained on speech signal of 8 kHz bandwidth (i.e., 16 kHz sampling frequency). As part

of the investigation, we thus also study the impact of sampling rate (SR) on marmoset call

analysis tasks.

5.3 Experimental Study

5.3.1 Systems

For each task, we divided all datasets into training, validation, and test sets, named Train, Val,

and Test respectively, following a 70:20:10 split ratio, in order to train models on a sufficiently

large number of samples, while ensuring sufficient data points for model evaluation and

validation. Train is used to train the models, Val to tune any hyperparameters, and Test to

evaluate the trained models on unseen data. We then developed the following systems for

each task on each dataset to investigate the aforementioned feature representations:
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1) We used pycatch22 to extract a feature vector x ∈ R1×D for each utterance, where D = 24,

and feed it to a simple, non-linear multilayer perceptron (MLP). We implement three blocks of

[Linear, LayerNorm, ReLU] layers, with 128, 64, and 32 number of hidden units respectively,

followed by a final linear layer to obtain the posterior probabilities. The classifier is trained for

30 epochs, using a batch size 16 and learning rate η= 1e −3.

2) As it is challenging to investigate all the different types of pre-trained SSL feature repre-

sentations across all tasks and datasets, we simply chose WavLM (S. Chen et al., 2022), as it

was found to yield strong performance on the task of marmoset caller detection (Sarkar and

Magimai.-Doss, 2023), been found to scale well to different human speech processing tasks in

the SUPERB challenge (S.-w. Yang et al., 2021). For each layer, we extracted frame-by-frame

variable-length feature representations x ∈RN×D , where D = 768 and N the variable number

of frames (contingent on the vocalization length). We then converted these embeddings into

utterance-level fixed-length representations fµσ ∈ R1×2D (denoted as WLM), by computing

and concatenating the first and second order statistics across the frame axis on the extracted

features. An MLP of same three layer architecture as C22 is then trained with the fixed length

feature as input.

3) We trained a convolutional neural network (CNN) based end-to-end acoustic modeling

system (denoted as E2E) that takes a raw waveform as input and classifies to the output

classes. Following the literature in speech processing (Dubagunta, Vlasenko, and Magimai.-

Doss, 2019; Nallanthighal et al., 2021; Purohit et al., 2023), the E2E system consists of four

convolution layers followed by an adaptive pooling layer and two hidden layers. The E2E

system is optimized with a cross-entropy cost function with an early stopping criteria.

Table 5.2 – CNN model parameters. n f denotes the number of filters, nhu the the number of
hidden units, and σ the activation function.

Layer kW dW n f /nhu Padding σ

Conv 1 kW dW 128 - ReLU
Conv 2 10 5 256 - ReLU
Conv 3 4 2 512 2 ReLU
Conv 4 3 1 512 1 ReLU
Adapt - - - - -
FC 1 - - 512 - ReLU
FC 2 - - 256 - ReLU
FC 3 - - nc - -

Table 5.2 presents the architecture of the E2E system. The first convolution layer kernel width

kW and shift dW was chosen based on the sampling frequency. More precisely, based on

the understanding gained from speech studies, we chose those hyper-parameters to strike

a balance between the length of the convolution filter and enough pitch cycles being mod-

eled (Muckenhirn, Magimai.-Doss, and Marcel, 2018). For 44.1 and 60 kHz sampling frequency,

we chose kW = 1 ms and dW = 0.05 ms, respectively. As marmoset calls have fundamental
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frequency around 5 kHz and above (J. A. Agamaite et al., 2015), 1 ms signal would be expected

to contain around 10 pitch cycles or more. However, for 16 kHz sampling frequency, 1 ms

would contain only 16 samples, i.e. at the most 1-2 sample(s) representing each pitch cycle.

This may not hinder capturing the pitch frequency information in the marmoset call well. So,

for 16 kHz we set kW = 10 ms and dW = 0.5 ms. The training batch size 16 and learning rate

of 0.001, same as the MLP classifier for C22 and WLM. The optimization configuration simply

consisted of Adam and a dynamic learning rate scheduler which reduces the learning rate η

when the selected optimization criterion, in this case Val UAR, shows no improvement after

10 epochs.

In the case of C22, we developed systems at native sampling frequency and downsampled

acoustic signals: 16 kHz for D1, 60 and 16 kHz for D2, and 60 and 16 kHz for D3. In the case

of WLM, we developed systems with signals downsampled to required pre-training sampling

rate of 16 kHz. For E2E system, D2 and D3 signals were downsampled to 60 and 16 kHz. To

evaluate the systems we used Unweighted Average Recall (UAR) as the metric to account for

any class imbalance.

5.3.2 Results

Table 5.3 shows the performances of systems based on different feature representations. For

the sake of clarity, only the best layer and worst layer performances are reported for WLM.

Figure 5.2 presents the layer-wise performances for all tasks on all datasets for WLM. Note that

layer 0 corresponds to the output embedding of the CNN encoder, where as the other 12 refer

to the outputs of the transformer encoder layers. The performances are all above chance level,

i.e. 100/nc , for all systems.
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Figure 5.2 – Layer-wise UAR scores for WLM for all tasks and datasets. The layers follow the same
indexing as (S. Chen et al., 2022).

Ignoring the sampling frequency aspect, it can be observed that E2E yields the best perfor-
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Table 5.3 – UAR scores on Test on features F . WavLM’s best and worst layer’s score is given. For
each dataset, the best score across features is bolded per task.

D F SR CTID CLID SID

D1 C22
44.1 51.04 47.58 N/A
16 37.72 34.54 N/A

D1 WLM 16
60.10 67.47 N/A
33.74 36.05 N/A

D1 E2E
44 68.32 74.12 N/A
16 53.03 59.94 N/A

D2 C22
300 37.68 43.56 66.24
60 32.50 35.52 63.38
16 35.65 35.32 58.14

D2 WLM 16
56.77 46.05 63.80
32.11 25.42 57.98

D2 E2E
60 42.03 49.78 62.36
16 37.65 36.21 60.15

D3 C22
125 64.32 43.19 62.80
60 65.67 45.50 61.22
16 52.59 39.43 57.32

D3 WLM 16
80.38 55.58 74.26
64.62 41.33 59.14

D3 E2E
60 65.31 47.92 60.73
16 66.24 31.31 56.59

mances for D1’s CTID and CLID tasks. For D2, WLM yields best performance for CTID, E2E

for CLID, and C22 for SID. On both D1 and D2, we can observe that WLM yields competitive

systems, however in the case of D3, WLM’s third layer representations consistently yield the

best performance across all the tasks (see Figure 5.2), and outperform C22 and E2E. Although

WLM yields competitive performances on D1 and D2, it is difficult to systematically compare

to C22 or E2E as different layers yield best performance for different tasks.

Furthermore, it can be observed that the 16 kHz SR performance is generally inferior across

different datasets and tasks for C22 and E2E. This finding is in line with the understandings in

the literature gained by analysis of different call types which showed that most marmoset call

types extend into frequencies above 8 kHz (J. A. Agamaite et al., 2015). This implies that, with

an 8 kHz bandwidth, certain vital information for specific call types might be lost, rendering it

increasingly challenging, if not impossible, for the classifier to accurately categorize certain

calls. Indeed, it can be observed that C22 systems yield superior performance with the native

SR compared to 16 kHz for all datasets. This emphasizes that higher frequencies are likely to
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contain valuable information. A comparison between C22, WLM and E2E at 16 kHz sampling

frequency demonstrates the potential of SSL based feature representations learned on human

speech.

It is worth noting that a recent, independent study explored representations learned from

other acoustic domains such as general audio, which includes audio event classes such as

environmental sounds, musical instruments, and human and animal vocalizations. They

demonstrated on D1 that increasing the pre-training bandwidth of a PANN model (Kong

et al., 2020), pre-trained on the AudioSet dataset with log-mel spectrogram inputs, improved

performance on both CTID and CLID tasks (Sarkar and Magimai.-Doss, 2024). However, the

study didn’t explicitly disentangle whether these improvements resulted from the increased

bandwidth itself, the spectrogram-based inputs, or from the inclusion of some animal vocal-

izations in the pre-training dataset. This distinction still remains an important open question

for future investigations.

5.4 Analysis

5.4.1 Layer-wise Linear Performance Analysis

In Figure 5.2, it can be observed that lower layer representations tend to yield better systems.

To further ascertain that, we carried out layer-wise classification performance of the same

tasks using a simple linear classifier (single layer perceptron). Figure 5.3 shows the results

independently normalized per-task to a [0, 1] range. It can be observed that the lower layers

are much more salient representations for all three tasks across all datasets when compared to

higher layers. A possible explanation is that, because WavLM’s CNN encoder operates directly

on the raw waveform, the early layers capture fundamental acoustic features and can leverage

spectro-temporal variations relevant to tasks such as speaker identification and verification

(S. Chen et al., 2022). Thus, these lower layers inherently generalize better to other acoustic

domains, such as marmoset vocalizations. In contrast, the later layers – shown to perform

well on linguistic tasks, such as speech or phoneme recognition – appear more specialized for

human speech and consequently much less transferable to bioacoustics, resulting in lower

performance. We can also observe that there is no consistent optimal layer for each task type

across the datasets.

5.4.2 Frequency Response of Learnt Convolution Filters

We analyzed the frequency response of the first learned convolution layer filters of E2E sys-

tems by estimating the cumulative frequency response Fcum as (Palaz, Magimai.-Doss, and

Collobert, 2019):

Fcum =
n f∑

k=1

Fk

∥Fk∥2
, (5.1)
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Figure 5.3 – Layer-wise UAR scores of WLM features modeled by single layer perceptron. The
scores are normalized independently per task. Darker regions indicate higher performance.

where n f denotes the 128 filters in the first convolution layer and Fk denotes discrete Fourier

transform of filter k over 2048 DFT points.

Figure 5.4 shows the cumulative frequency response for each task per dataset at an SR of 16 kHz,

and 44.1 or 60 kHz. With a 8 kHz bandwidth (left half), it can be observed that the emphasis

is on frequencies 4-5 kHz and above irrespective of the task. As the bandwidth of the signal

is increased (right half), it can be observed that emphasis is also given to higher frequency

regions such as around 10 kHz or above. These observations further corroborate previous

findings that most marmoset calls occupy frequency ranges beyond 8 kHz (J. A. Agamaite et al.,

2015), and also explain the improved performance obtained with higher bandwidth signals.

In addition, we observe that for different tasks the learned filters give emphasis to different

frequency regions. A detailed analysis of the spectral information learned is part of our future

work. Taken together, the analysis indicates that the E2E framework inspired from speech

processing can be scaled to marmoset call analysis.

5.5 Conclusions

This chapter explored different feature representations or learning methods, namely hand-

crafted feature Catch22, SSL feature representation WLM, and end-to-end acoustic modeling

(E2E) for analyzing marmoset calls. Our investigations on three different datasets demonstrate

that end-to-end acoustic modeling and SSL feature representations yield better systems than

handcrafted Catch-22 features for call-type classification and caller identification, while also

achieving comparable performances for sex identification at a common sampling rate. As a

by-product, our studies demonstrated that (a) the utility of pre-trained SSL models on human

speech can be extended to call-type and sex, besides caller discrimination and (b) end-to-end
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Figure 5.4 – Cumulative frequency response per task on all datasets. Sampling rate: 16 kHz (left),
and 44.1 or 60 kHz (right).

acoustic modeling methods developed for speech processing can be scaled for marmoset call

analysis. Our study raises a few pertinent questions such as: (a) with limited signal bandwidth

how are SSL features informative about marmoset calls? (b) what kind of task specific spectral

information is learned by the E2E systems?, and (c) how to combine the different approaches

for improving marmoset call analysis? Furthermore, in this work we only investigated feature

representations that directly modeled the raw input waveform. However, recent bioacoustic

studies on bats, birds, and rodents have leveraged spectrogram-based methods (Goffinet et al.,

2021; Ruff et al., 2020; K. R. Coffey, Marx, and Neumaier, 2019; N. Gu et al., 2024). Whether such

approaches can offer distinct advantages over the waveform-based methods for marmoset

vocal communication analysis remains to be determined. Our future work will investigate

these questions.
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Chapter 6. Bandwidth Limitation in Speech and Audio SSL Models

6.1 Introduction

Chapter 4 and 5 demonstrated that neural representations derived from models pre-trained on

human speech through self-supervised learning (SSL) could distinguish individual marmoset

call-types and caller identities (Sarkar and Magimai.-Doss, 2023; Sarkar et al., 2025). We argued

that SSLs only learn the intrinsic structure of the unlabeled input signal, typically through

a masking-based pre-text training task, to capture essential information independently of

any domain-specific knowledge, such as human speech production, and thus can be cross-

transferred across different acoustic domains, such as bioacoustics. Building on these findings,

this chapter investigates the utility and limitations of such pre-trained SSL models for the

purpose of marmoset call analysis, with a focus on the following key points:

1. Bandwidth: Given that these models are typically pre-trained on human speech with

a bandwidth of 8 kHz, we address their mismatch with the biological vocalization and

auditory range of marmosets, predominantly concentrated in the 5–10 kHz spectral

region (Osmanski et al., 2016), and thus evaluate their capability to accurately represent

marmoset calls. By examining models pre-trained across varying bandwidths, we aim

to evaluate their effectiveness in adequately representing marmoset calls, and seek to

clarify how model bandwidth influences their classification.

2. Pre-training domain: It remains unclear how models pre-trained on human speech

compare to trained on other acoustic domains for accurately capturing marmoset call

characteristics. We examine representations produced by different pre-training sources,

such as human speech and general audio, across supervised and self-supervised learning

frameworks, against a spectral baseline to identify the most suitable pre-training source

for cross-domain bioacoustic signal analysis.

6.2 Methodology

6.2.1 Dataset and Tasks

For our study, we used the InfantMarmosetsVox (IMV) dataset (Sarkar and Magimai.-Doss,

2023), which contains 72,921 labeled marmoset vocalization segments (totaling to 464 min-

utes), sampled at 44.1 kHz, across ten marmoset individuals and contains eleven marmoset

call-types. Table 6.1 presents the data distribution in function of the call-types and callers. For

our experiments, we divide the dataset into a Train, Val, and Test sets, following a random

70:20:10 split. We denote call-type and caller identity multi-class classification as CTID and

CLID respectively.

Figure 6.1 gives the visualizations of all call-types as well the density distribution of the spec-

trums across the entire dataset. Frequencies below 500 Hz are nullified purely for visualization

to eliminate any low-frequency noise. We can observe that information starts at around 7-8

kHz for most calls in this dataset.

48



6.2 Methodology

Table 6.1 – InfantMarmosetsVox dataset statistics.

ID Call-type Count

0 Peep (pre-phee) 1283
1 Phee 27976
2 Twitter 36582
3 Trill 1408
4 Trillphee 728
5 Tsik Tse 686
6 Egg 1676
7 Pheecry (cry) 23
8 TrllTwitter 293
9 Pheetwitter 2064
10 Peep 202

Total 72921

Caller ID Count

0 15521
1 8648
2 13827
3 5838
4 5654
5 3522
6 4389
7 2681
8 6387
9 6454
- -

Total 72921

0

4000

8000

12000

16000

Fr
eq

ue
nc

y 
[H

z]

0: Pre-Phee 1: Phee 2: Twitter 3: Trill 4: Trillphee 5: Tsik Tse 6: Egg 7: PheeCry 8: TrllTwitter 9: Pheetwitter 10: Peep

0 8000 16000
0.0

0.5

1.0

N
or

m
al

iz
ed

M
ea

n 
M

ag
ni

tu
de

0 8000 16000 0 8000 16000 0 8000 16000 0 8000 16000 0 8000 16000 0 8000 16000 0 8000 16000 0 8000 16000 0 8000 16000 0 8000 16000
Frequency [Hz]

Figure 6.1 – Marmoset vocalizations with a 16 kHz bandwidth. Top: Spectrograms of a single
call-type vocalization. Bottom: The mean spectrum for all vocalizations per call-type across the
dataset, normalized. Shaded areas indicate ± 1 std from the mean spectrum.

6.2.2 Models and Feature Representations

For our study, we select four distinct frameworks for feature representations F : hand-crafted

(HC) features derived through signal processing techniques, neural representations obtained

via self-supervised learning (SSL), pre-trained on either human speech or general audio, and

features generated through supervised learning (SL) models pre-trained on general audio.

These frameworks are summarized in Table 6.2. We extract the features from these frameworks

by giving the marmoset calls as input.

Hand-crafted: The Highly Comparable Time-Series Analysis (HCTSA) framework, used for

interpreting diverse time series data, extracts 7700 features through signal processing methods,

such as LPC (Fulcher, Little, and Jones, 2013). It has been applied to diverse tasks such as

birdsong discrimination (Paul et al., 2021), ecosystem monitoring (Sethi, 2020), and marmoset

caller identification (Phaniraj et al., 2023). Despite its broad applicability, HCTSA’s computa-

tional demands and feature redundancy are significant limitations. The CAnonical Time-series

CHaracteristics (Catch22/C22), a streamlined subset of HCTSA, provides high performance

with minimal redundancy across numerous classification problems (Lubba et al., 2019). We
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Table 6.2 – # Parameters P and feature dimension D of selected models, pre-trained on AudioSet
(AS) or LibriSpeech (LS).

F Corpus P D Type

C22 (Lubba et al., 2019) - - 24 HC
WavLM (S. Chen et al., 2022) LS 94.38M 1536 SSL

BYOL (Niizumi et al., 2021) AS 5.32M 2048 SSL
PANN (Kong et al., 2020) AS 8.08M 2048 SL

extend this feature set to a final dimension of D = 24 by appending the first and second order

statistics, and use it as our spectral baseline.

SSL pre-trained on human speech: Following the approach in (Sarkar and Magimai.-Doss,

2023), we use feature representations from SSL models trained on human speech, extend-

ing it to both call-type and caller identity classification. We select the WavLM base model,

pre-trained on the 960-hour LibriSpeech dataset, based on its effectiveness in marmoset

call detection as well as its versatility in speech processing tasks as demonstrated in the SU-

PERB challenge (S.-w. Yang et al., 2021). For each layer, feature representations of length 768

are extracted for each frame. Then, they are transformed into fixed-length utterance-level

representations by computing and aggregating first and second order statistics across the

frame-axis, resulting in a final representation of length D = 1536.

SSL pre-trained on general audio: Expanding marmoset call analysis literature, we utilize

embeddings from models pre-trained on the AudioSet (AS) dataset, which includes audio

event classes such as environmental sounds, musical instruments, and human and animal

vocalizations. Specifically, we choose the AudioNTT2020 model from the BYOL-A architecture

(Niizumi et al., 2021), extracting embeddings from its final fully connected layer of length

D = 2048. Inputs are processed into log-mel spectrograms, adhering to the spectral parameters

detailed in the original study, i.e. a 8 kHz bandwidth, 64 ms window size, 10 ms hop size, and

64 mel bins spanning from 60 to 7800 Hz.

SL pre-trained on general audio: We further investigate feature extraction from large-scale

networks pre-trained for general audio pattern recognition. The CNN14 model from the

PANN network (Kong et al., 2020) is chosen, with pre-trained weights applied at three different

bandwidths: 4, 8, and 16 kHz. This model employs a balanced sampling strategy across

AudioSet’s sound classes and also processes input vocalizations into spectrograms to extract

log-mel filterbanks. For a bandwidth of 16 kHz, window and hop sizes are set to 1024 and 320

samples, respectively, and proportionally halved for 8 and 4 kHz. The model utilizes 64 mel

bands, spanning from 50 Hz and to the Nyquist frequency. Embeddings of length D = 2048 are

extracted from the linear layer preceding the final classification layer.
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6.3 Call Similarity Analysis

This section presents a pairwise similarity analysis of the selected features on the Train set to

identify any discernible patterns or correlations for given the vocalizations. Specifically, we

investigate how variations in the bandwidth of the pre-trained models affect the similarity

distribution of intra-class embeddings, and examine any distinctions between models pre-

trained on speech against general audio. To compare the features, which are high-dimensional

vectors, we use the cosine distance defined as sim(x1, x2) = 1−(x1 ·x2 /∥x1∥·∥x2∥), bounded in

[0,2]. Two features are identical when their cosine distance is 0, orthogonal at 1, and opposite

at 2. For WavLM, we select the first layer, and only use the first half of the extracted features,

corresponding to the mean values averaged frame-wise.
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Figure 6.2 – Distribution of pairwise cosine distances.

Figure 6.2 presents the overall distribution of pairwise distances. The distributions are over-

lapping, centering around a median distance of 1 for all representations, suggesting a lack

of clear correlation or similarity within the embeddings generated. Figure 6.3 further de-

lineates the distributions into distance matrices for each feature set, where diagonal and

off-diagonal entries correspond to intra-class and inter-class distances respectively. In an

ideal scenario, embeddings from the same call-type or caller would exhibit closer distances,

where as embeddings from different classes would have a higher dissimilarity.

We can observe that the models pre-trained on general audio datasets (BYOL and PANN)

yield more distinct peaks and diagonals, on figures 6.2 and 6.3 respectively, compared to

those pre-trained on human speech (WavLM) or the handcrafted baseline (Catch22). This

distinction is more pronounced for call-types than for caller identification. This is expected,

given that the call-types are spread across caller classes (a caller produces different calls, while

a call can come from any caller). Although these patterns indicate some level of class-specific

clustering, the distribution of distances largely show that the features are highly orthogonal.

The similarity analysis thus indicates minimal feature correlation, and suggests that classifying

these vocalizations with a simple linear classifier would be challenging, as there is no clear

linear separability between the classes.
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Figure 6.3 – Pairwise mean cosine distances matrices for features F at different bandwidths
for call-types (CTID) and callers (CLID). Diagonal entries represent intra-class distances, and
off-diagonal the inter-class. Darker regions indicate higher similarity.

6.4 Classification Analysis

Based on the insights of our similarity analysis, we aim to evaluate the saliency of the extracted

representations, and proceed to classify them using a same non-linear MLP as in Chapter 4, for

the multi-class classification tasks. We implement three blocks of [Linear, LayerNorm, ReLU]

layers, with 128, 64, and 32 number of hidden units respectively, followed by a final linear

layer to obtain the posterior probabilities. To evaluate the performance we used Unweighted

Average Recall (UAR) as the metric to account for any class imbalance. To obtain robust

results, we employ the grid search methodology with Val UAR score as the optimization

criterion. We train the classifier for 30 epochs with cross-entropy loss, and search for the

optimal hyperparameters values of η and batch-size across 2[5–9] and [1e-3, 1e-4] respectively

for each feature–task permutation on Train and Val. The optimization consists of Adam and a

η-scheduler of factor 0.1 and patience of 10 epochs. Lastly, for WavLM, we classify each of the

encoder layers [0–13] to identify the optimal layer.

Figure 6.4 presents the layer-wise scores for WavLM, normalized per task to a [0, 1] range. We

can observe that the lower layers are clearly much more salient representations for both tasks

compared to higher layers. Based on these results, we use the best individual WavLM layers

for our two tasks.

0 1 2 3 4 5 6 7 8 9 10 11 12
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Figure 6.4 – Layer-wise UAR scores of WavLM features, normalized per task. Darker regions
indicate a higher performance. Layer 0 corresponds to the output of the CNN encoder.

Table 6.3a) summarizes the classification results of the different feature sets at an 8 kHz
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bandwidth (BW). Random performance is given as 100 over the number of classes. Notably,

BYOL features outperform the other features, for both CTID and CLID, despite having fewer

parameters than WavLM and PANN, while C22 proves to be the overall weakest representation.

WavLM shows the highest difference in performance across tasks. Meanwhile, Table 6.3b)

highlights the impact of pre-training bandwidth for salient representations on PANN features.

The results clearly show that the bandwidth size correlates directly with the performance,

increasing monotonically. Particularly, PANN features at 16 kHz achieve the highest perfor-

mance across all features and BWs for CTID. BYOL embeddings at 8 kHz notably outperform

PANN at 16 kHz for CLID. The best scores for both tasks are also closely matched in value.

Table 6.3 – UAR scores [%] on Test for pre-trained features F . WavLM’s best layer’s score is given.

Section F BW CTID CLID

(a)

Random - 9.09 10
C22 8 41.96 35.62

WavLM 8 59.99 67.47
BYOL 8 63.64 68.30
PANN 8 58.54 56.02

(b)
PANN 4 46.27 41.10
PANN 8 58.54 56.02
PANN 16 69.09 65.39
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Figure 6.5 – Normalized confusion matrices with row indices representing true class labels. Darker
diagonals signify higher performance.

Figure 6.5 shows the classifier’s performance through confusion matrices. We can again clearly

observe the monotonic improvement in CTID classification performance for PANN features

as the bandwidth increases. We also notice a prevalent trend of false positives for call-type

ID 2 (Twitter) across all feature sets, especially against IDs 0, 8, and 10, attributable to its

high occurrence in the dataset and broad spectral range (Pistorio, Vintch, and X. Wang, 2006;

J. Agamaite et al., 2015). The CLID results contain distinctly fewer misclassifications, which

aligns with expectations since the call-types are spread among the different callers classes.

The exception is C22, which yields the weakest performance. Caller classes with higher data
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volumes (IDs 0 and 2) perform better compared to the others. Finally, a clear improvement in

performance correlated with bandwidth is seen for PANN features, as with CTID.

6.5 Conclusions

This chapter investigated the utility and limitations of foundations models, pre-trained on

human speech or general audio. To that end, we conducted and validated two studies across

two lines of investigation.

First we conducted a call similarity analysis, which revealed that the features extracted from

these models lacked linear separability within or across classes. Then, we conducted a clas-

sification study which demonstrated that a non-linear classifier can still achieve substantial

performance, and highlighted that a larger bandwidth directly correlates with improved perfor-

mance. Classification of call-types also appeared to be more sensitive to bandwidth changes

than caller identities. Additionally, the pre-training domain of speech and general audio

showed comparable performances, with a distinct improvement over handcrafted features.

Finally, we obtained close best performance for both call-type and caller classification tasks.

In conclusion, our findings underscore the potential of leveraging pre-trained SSL models

for bioacoustic signals, particularly when the model’s bandwidth aligns with the biological

auditory and vocal range of the studied species. Future collaborative work with biologists and

linguistics researchers could explore the biological implications of these results, especially in

understanding the evolutionary aspects of marmoset vocal behaviour and their perceptual

processing, to bridge the gap between computational models and biological insights in non-

human vocal communication research.
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The material presented in this section is adapted from the following publications:

• E. Sarkar and M. Magimai.-Doss (2025b). “Comparing Self-Supervised Learning

Models Pre-Trained on Human Speech and Animal Vocalizations for Bioacoustics

Processing”. In: Proc. of ICASSP, pp. 1–5.

Supplementary Material

• Source Code: https://github.com/idiap/ssl-human-animal.

55

https://github.com/idiap/ssl-human-animal


Chapter 7. Comparing Human and Non-Human Transference in SSL Models

7.1 Introduction

Bioacoustics plays a crucial role in ecological and evolutionary research, providing insights

into animal communication, biodiversity, and the origins of language. However, despite its

significance, working with bioacoustic data presents several challenges: the data is often scarce,

difficult to collect, noisy, and expensive to annotate. In recent years, advances in machine

learning have made substantial progress in addressing these challenges (Stowell, 2022b).

Notably, modern pre-trained deep learning foundation models have demonstrated impressive

transferability to bioacoustic tasks, significantly advancing the field (Hagiwara et al., 2023b;

Ghani et al., 2023; Dufourq et al., 2022; Heggan et al., 2024; Moummad, Farrugia, and Serizel,

2024). As demonstrated in Chapter 4, 5, 6, self-supervised learning (SSL) models pre-trained

on human speech, in particular, have shown remarkable success in tackling various bioacoustic

tasks, such as animal call-type classification (Sarkar and Magimai.-Doss, 2024; Mahmoud

et al., 2024; Abzaliev, Perez-Espinosa, and Mihalcea, 2024; Heer Kloots and Knornschild,

2024; Shi, Itoyama, and Nakadai1, 2024), caller identification (Sarkar and Magimai.-Doss,

2023; Cauzinille et al., 2024; Knight et al., 2024), and species recognition (Hagiwara, 2023a).

These models leverage large volumes of unlabeled data, prevalent in bioacoustics, by creating

surrogate labels based on the intrinsic structure of the audio data, and then solving pre-text

tasks designed to learn salient representations (A. Mohamed et al., 2022). Given the domain-

agnostic nature of these pre-training tasks, SSL models have been effective in transferring

from speech to bioacoustics without the need for domain-specific fine-tuning. Essentially,

SSLs serve as powerful, general-purpose feature extractors for a wide range of downstream

tasks.

Building on these developments, this chapter explores the following two points, aimed at

analyzing SSLs for bioacoustics:

1. SSL Pre-training Domain: While SSL models pre-trained on human speech have shown

strong transferability to bioacoustic tasks, recent research has explored pre-training on

bioacoustic data itself, both in supervised and self-supervised frameworks (Kahl et al.,

2021; Denton, 2023; Hagiwara, 2023a). The motivation behind pre-training on animal

data is that these models may better capture species-specific vocal patterns and other

properties unique to animal sounds. However, given that SSL pre-training is designed to

learn general, domain-agnostic features, it is not yet clear whether pre-training directly

on bioacoustics actually provides any significant advantage over SSLs pre-trained on

human speech. Therefore, in this study, we systematically compare SSL models pre-

trained on human speech against those on animal vocalizations, and evaluate their

performance for bioacoustics processing across various datasets and tasks.

2. Fine-tuning on Human Speech: SSL representations have demonstrated strong perfor-

mance on bioacoustic tasks without requiring fine-tuning, indicating their extracted la-

tent representations can capture acoustically rich information capable of distinguishing

animal call-types and caller identities. However, fine-tuning in a supervised framework
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often forces the model to learn novel and more specialized patterns, such as phonetic

distinctions and temporal structures, typically leading to further performance gains. As

both human speech and animal calls encode structured vocal and linguistic information

for communication, SSL models fine-tuned on speech recognition (ASR) may provide an

additional inductive bias, enhancing the model’s ability to recognize complex features

in bioacoustic data. Therefore, we seek to explore whether fine-tuning pre-trained SSLs

on human speech tasks, such as ASR, can further improve these models’ capability to

process animal vocalizations by capturing the subtle spectro-temporal characteristics

present in animal calls, which may otherwise remain underrepresented in general SSL

pre-training.

The rest of the chapter is organized as follows: Section 7.2 provides the experimental setup

for the studies in this chapter, Section 7.3 presents and thoroughly analyzes the experiments’

comparative results. Finally, Section 5.5 concludes the chapter.

7.2 Experimental Setup

7.2.1 Datasets, Tasks, and Protocols

We conducted the experiments for our studies on the three distinct bioacoustic datasets,

summarized in Table 7.1. Figure 7.1 also presents a log distribution of their vocalization

lengths.

Table 7.1 – L denotes the length [minutes], nc the number of classes, SR the sampling rate [kHz], µ
the median length [ms], σ the std.

Dataset # Samples L SR nc µ σ

Watkins 1,697 295 – 32 1701 71245
IMV 72,920 464 44.1 11 127 375
Abzaliev 8,034 137 48 14 655 1313

Watkins (Sayigh et al., 2017): contains the recordings of different marine mammals, such as

specific dolphins, whales, and seals. We chose Watkins for its multi-species vocalizations, rich

acoustic variety, and high variance in segment lengths (Figure 7.1). It has been commonly

used for bioacoustic benchmarking, particularly for evaluating modern deep learning models

(Hagiwara, 2023a; Hagiwara et al., 2023b). We chose the ‘best of’ cut of the original dataset,

a selected subset from the original 15,000 samples in total, deemed to be of higher sound

quality and to contain less noise. The final dataset contains 1697 vocalization segments from

32 different species, totaling to 295 minutes, with a median length of 1701s. The sampling rate

(SR) varies according to the recorded species.

InfantMarmosetsVox (IMV) (Sarkar and Magimai.-Doss, 2023): is an audio dataset of Callithrix
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jacchus, a highly vocal new world primate. Marmosets were chosen for their complex social

system, which allows them to encode vital information in their calls, such as identity, group

affiliation, and dialect. They serve as surrogate models to understand the evolutionary origins

of human vocal communication for neuro-biologists. The dataset consists of 72,920 segments

representing 11 different call-types over 464 minutes. It was recorded from five pairs of infant

marmoset twins, each recorded individually in sound-proofed rooms at 44.1 kHz SR, without

communication with other marmoset pairs or the experimenters. The audio recordings were

manually labeled by an experienced researcher. Although a large dataset by bioacoustics

standards, each segment is predominantly short, with a median length of 127 ms. The spectral

range of the calls is mostly centered around 7-8 kHz, although there is some information

present above 16 kHz (Sarkar and Magimai.-Doss, 2024).

Abzaliev (Abzaliev, Perez-Espinosa, and Mihalcea, 2024): is a novel dog dataset (here referred

to by the first author’s name) consisting of 8,034 vocalizations from the v2017 Mescalina

Bark ID dataset (Pérez-Espinosa et al., 2018). It contains 14 different call-types, ranging from

normal, aggressive, fearful, and playful barks at strangers (IDs 0–3), to vocalizations related to

owner interaction (4–5) and non-stranger/non-play sounds (6). It also contains positive or

negative whines (7–8) and growls (9–10), barks associated with sadness or anxiety (11), and

excitement upon the owner’s arrival home (12). The recordings originate from various dog

breeds, including Chihuahuas, French Poodles, and Schnauzers. The data was recorded at

48 kHz SR from a microphone, and followed a protocol designed and validated by experts in

animal behavior. The dog vocalizations were induced by exposing the dogs to different types

of external stimuli, with the participation of the owner and/or experimenter. We discard all

the segments labeled as non-dog sounds, such as TV, cars, and appliances.

For our experiments, we divide the datasets into a Train, Val, and Test sets, following a random

70:20:10 split protocol.
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Figure 7.1 – Log distribution of vocalization lengths per dataset. The medians are calculated over
the entirety of each dataset.
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7.2.2 Models and Feature Representations

For our experiments, we select four different models to obtain our various feature representa-

tions F . These consist of neural representations extracted through pre-trained (PT) models

on animal vocalizations or human speech in a self-supervised learning framework, as well as

their counterparts fine-tuned (PT+FT) in a supervised approach. The different features and

their various properties are tabulated in Table 7.2.

Table 7.2 – # Parameters P [M] and feature dimension D of selected models. LS denotes Lib-
riSpeech, AS represents AudioSet, and VVGS is VGGSound.

F Corpus P D TL Type

(Hagiwara, 2023a) AVES-Bio FSD, AS, VVGS 94.68 768 12 PT
(W.-N. Hsu et al., 2021) HuBERT LS 960 94.68 768 12 PT

(Baevski et al., 2020) W2V2 LS 960 95.04 768 12 PT
(Baevski et al., 2020) W2V2-100h LS 960 95.04 768 12 PT+FT
(Baevski et al., 2020) W2V2-960h LS 960 95.04 768 12 PT+FT

(S. Chen et al., 2022) WLM LS 960 94.38 768 12 PT
(S. Chen et al., 2022) WLM-100h LS 960 94.38 768 12 PT+FT

SSL pre-trained on animal vocalizations: We look at the AVES models family (Hagiwara,

2023a), which are essentially the same as HuBERT models, but pre-trained on bioacoustics

data instead of human speech. We select them based on their effectiveness on numerous bioa-

coustic classification and detection tasks, as well as the extensive benchmarking. Although this

model performs well compared to traditional classifiers (Hagiwara, 2023a), its performance

has not been directly compared to a regular HuBERT model pre-trained on speech. The AVES

set are pre-trained on combinations of publicly available audio datasets, namely FSD50K

(Fonseca et al., 2021), AudioSet (Gemmeke et al., 2017), and VGGSound (H. Chen et al., 2020),

instead of human speech. Specifically, we chose the Bio model, which was pre-trained on a

masked-prediction task on a total of 142K audio segments (360 hours) of the animal label in

the AudioSet ontology (ID: /m/0jbk) and VGGSound class group. It’s architecture is based on

HuBERT’s base model, and contains 12 encoder transformer layers (TL).

SSL pre-trained on human speech: In order to directly compare our performance against

AVES-Bio, we select the HuBERT base model, pre-trained on a masked-prediction task. In

addition, we also look at the base WavLM, denoted as WLM, based on its demonstrated

effectiveness in animal call and caller classification (Sarkar and Magimai.-Doss, 2023; Sarkar

and Magimai.-Doss, 2024; Sarkar et al., 2025), as well as its versatility in speech processing

tasks as benchmarked on the SUPERB challenge (S.-w. Yang et al., 2021). Finally, we also use

the base Wav2Vec2 model, denoted as W2V2, pre-trained on a constrastive task. All three

models were pre-trained on the 960-hour Librispeech dataset.

SSL pre-trained and fine-tuned on human speech: For our second study, we assess the impact

of fine-tuning on models pre-trained on human speech for bioacoustic tasks. To that end, we
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use WLM fine-tuned on 100 hours of Librispeech, and W2V2 fine-tuned on both 100 and 960

hours of Librispeech. All 3 models are fine-tuned on a ASR task1.

Fusion: We also compute a simple fusion representation as comparison to the other features.

For each vocalization segment, we simply compute the mean across the posterior probabilities

of all the other features, and then take its argmax.

Figure 7.2 – Feature representation extraction pipeline.

The general pipeline for obtaining a feature vector for a given vocalization segment is illus-

trated in Figure 7.2. We obtain the features from these each of the SSL models F , by first giving

them the animal vocalizations s as inputs resampled at 16 kHz. We extract the variable-length

embeddings x ∈ RN×D output for each frame. Then, we transform them into fixed-length

vocalization-level representations by computing and aggregating first and second order statis-

tics across the temporal axis, resulting in a final feature functional representation f ∈R2D . For

our work, we extract the embeddings of the CNN and all encoder transformer layers (TL) of F ,

since we are interested in investigating the features at a layer level.

7.3 Experiments and Analysis

This section looks at the classification performance of the extracted feature representations. In

order to compare and evaluate the saliency of the different features, we use same classifier as

the Chapter 5 and 6: a simple, non-linear MLP, composed of three blocks of [Linear, LayerNorm,

ReLU] layers, with 128, 64, and 32 number of hidden units respectively, followed by a final

linear layer.

We train the classifier for 30 epochs using cross-entropy loss, and employ a early-stopping

criterion, where training is stopped if no improvement is observed on the Val set for 10

consecutive epochs. The optimization consists of Adam, with a η-scheduler of factor 0.1 and

1All fine-tuned models are obtained from Huggingface, namely from the facebook, microsoft, and
patrickvonplaten repositories.
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patience of 10 epochs. We evaluate the performance through Unweighted Average Recall

(UAR) as the metric to account for any class imbalance.

7.3.1 Pre-Training Domain Analysis

In this sub-section, we analyze the impact of pre-training domain by comparing AVES against

HuBERT. Figure 7.3 shows that HuBERT outperforms AVES in the initial and final layers for

IMV. Both models show that the initial transformer layers are more important for this task,

indicating that this trend is not specific to speech-based pre-training. The loss of substantial

spectral information in these Marmoset calls when down-sampled to 16 kHz likely affects the

overall performance (Sarkar and Magimai.-Doss, 2024). For Watkins, we see that AVES’s initial

layers are not as salient as later ones, where as HuBERT’s middle layers are conversely the

least useful. In the Abzaliev dataset, AVES performs better overall, with both the initial and

later layers contributing comparably. HuBERT, on the other hand, does not scale well, and

follows the same downwards trend as IMV. Overall, the results indicate that pre-training on

bioacoustic data can provide marginal improvements in some datasets.
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Figure 7.3 – Layer-wise UAR [%] performance of AVES (•) against HuBERT (•).

7.3.2 Fine-Tuning Analysis

Fine-tuning yields mixed effects across both models and datasets, as shown in Figure 7.4.

In several cases, we observe that fine-tuned models do not consistently outperform their

base counterparts, particularly in W2V2-960h, with performance gains being marginal at best.

Notably, fine-tuning on more speech data, such as the 960-hour W2V2, sometimes leads to

a decline in performance in later layers, as seen on IMV and Abzaliev. This suggests that

fine-tuning on speech may push models to learn task-specific features that don’t generalize as

well to certain bioacoustic tasks.

Interestingly, for non-fine-tuned models, earlier layers often capture enough general acoustic

features to perform adequately. However, for fine-tuned models, selecting the optimal layer

becomes more important, as different layers may capture more specialized representations

that could benefit certain tasks. This points to the fact that fine-tuning creates more task-
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Figure 7.4 – UAR of W2V2 (▲) and WLM (■) against their fine-tuned versions.

specific representations, making careful layer selection more necessary for specific bioacoustic

tasks.

7.3.3 Comparative Analysis

Finally, we look at the general classification performance. Table 7.3 tabulates the result of the

layers yielding the highest scores from the different features.

Table 7.3 – UAR scores [%] on the best feature layer, on Test. Best performance is bolded, second
best is underlined.

Type F IMV Watkins Abzaliev

PT

AVES 62.54 94.95 54.23
HuBERT 64.35 94.18 47.96
WavLM 58.98 94.78 43.97
W2V2 62.40 94.25 48.95

PT + FT
WavLM-100h 60.93 93.93 47.90
W2V2-100h 63.44 91.77 44.91
W2V2-960h 61.25 91.42 44.36

Fusion 62.48 94.78 48.95

We can observe that the best scores are from the AVES and HuBERT models, both of which
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consist of the same architecture, pre-text task, and loss function. HuBERT and AVES yield

very comparable performances for both IMV and Watkins, indicating that HuBERT’s represen-

tations are robust for call-type classification tasks across different species. AVES achieves a

higher score on the Watkins dataset, suggesting that for this specific task, pre-training on bioa-

coustic data yields a small but notable improvement for species classification. Additionally,

we can clearly observe that all the best scores are from the PT category, as well as the second

best scores with the marginal exception W2V2-100h on the IMV dataset. This demonstrates

that further fine-tuning pre-trained speech models on an ASR task does not consistently bring

us any advantage over the pre-trained alone for bioacoustics classification tasks. It suggests

that the pre-trained representations may already be optimized, and fine-tuning might not

always yield significant benefits. Lastly, we observe that a fusion of all features over their best

layers doesn’t yield a more salient representation than the best performing model, although it

can outperform some of the others.
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Figure 7.5 – Confusion matrices of the best feature layers’ fusion.

Figure 7.5 shows the classifier’s performance of the fusion features through confusion matrices.

We can observe a good classification alignment for the three datasets. For IMV, there is a

noticeable trend of false positives for call-type ID 2, likely due to its high occurrence in the

dataset, and wide spectral range, causing an overlap of acoustic features with the other classes.

The Watkins dataset is unsurprisingly the easiest to classify, likely because of the clear acoustic

and spectral differences in the various species vocalizations, as well as the high variance in

segment lengths. Class ID 13 only had two samples which results in an empty row. In the

Abzaliev confusion matrix, we observe some confusion between certain call-types, namely the

different barks (IDs 0–5) which may contain overlapping acoustic features. Some classes had

very few samples (ID 6) or were removed during data preprocessing (ID 7), resulting in empty

rows.
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7.4 Conclusions

This chapter presented a comparison of self-supervised learning models pre-trained on hu-

man speech and animal vocalizations for bioacoustic tasks. Through two distinct lines of

investigation, we first examined the impact of pre-training domains by comparing models pre-

trained on human speech and animal vocalizations. The results indicated that pre-training on

bioacoustic data mostly yields comparable performance to pre-training on speech, but can

offer limited advantages in select contexts. In our second line of investigation, we explored

whether fine-tuning pre-trained speech models on ASR could further enhance their ability

to capture structured patterns in animal vocalizations. We found that fine-tuning yielded

inconsistent results, suggesting that the general-purpose representations learned during pre-

training may already be well-suited for bioacoustic tasks, and further fine-tuning on speech

does not consistently provide additional benefits.

In conclusion, our results highlight the utility of pre-trained speech models for bioacoustic

tasks, even without further fine-tuning. Future work could explore attention mechanisms

in SSL models to gain deeper insights into how these models interpret and process specific

features of animal vocalizations.
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8 Adaptation of Speech and Bioacous-
tics Models
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Publication Note

The material presented in this section is adapted from the following publications:

• E. Sarkar, A. Mohammadi, and M. Magimai-Doss (July 2025). “Adaptation of

Speech and Bioacoustics Models”. In: Idiap-RR-05-2025.

8.1 Introduction

In Chapter 7, we examined whether fine-tuning models pre-trained on human speech could

improve processing of animal vocalizations, but found no consistent gains using publicly

available models fine-tuned on ASR. In this chapter, we investigate whether fine-tuning

the aforementioned SSL models directly on the downstream bioacoustic data yields better
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performance on the same classification tasks.

Fine-tuning a pre-trained model on a downstream task or domain is the second step of

the typical SSL framework, as explained in Section 2.4.2. However, in standard fine-tuning,

the entire parameter set of the network is updated, which can quickly become exceedingly

computationally expensive or even infeasible. The advent of large foundation models has

lead to the development of a number of parameter efficient fine-tuning (PEFT) techniques for

downstream tasks. The core idea behind PEFT approaches is to only strategically update a

small subset of parameters, while keeping the majority frozen, thereby greatly reducing the

computational cost and tuning time.

To this end, we adopt Low-Rank Adaptation (LoRA) (Hu et al., 2022) for parameter-efficient

fine-tuning (PEFT) and apply it to two architecturally identical models: HuBERT (pre-trained

on human speech) and AVES (pre-trained on bioacoustics). We focus exclusively on the call-

type identification (CTID) task and conduct systematic ablations to understand the adaptation

process. Specifically, we explore which permutation of transformer projection matrices to

optimize, which encoder layers permutations to fine-tune, and whether to freeze or drop

the remaining layers, in order to achieve better performance. Moreover, having observed a

progressive decline in representational quality across deeper layers in the previous chapter,

we examine whether this layer-wise trend changes when models are fine-tuned on domain-

specific data.

The remainder of this chapter is organized as follows. Section 8.2 provides an overview of

parameter efficient fine-tuning and parameter pruning, while Section 8.3 outlines the research

questions and experimental methodology for the different experiments. Finally, Section 8.4

present the results from the various studies, and Section 8.5 concludes the chapter.

8.2 Parameter Efficient Fine-Tuning and Parameter Pruning

The following Section 8.2.1 gives a brief overview of Low-Rank Adaptation (LoRA), a modern

PEFT adaptation technique which has gained a lot of prominence thanks to its simplicity and

effectiveness. We also introduce the notion of parameter pruning in Section 8.2.3.

8.2.1 Low-Rank Adaptation (LoRA)

During training or fine-tuning, a model’s parameters are updated through backpropagation,

as defined in Equation (2.2). Although these weight parameters w are full-rank matrices, they

have been shown to reside in a much lower-dimensional subspace, i.e. to have low ‘intrinsic

dimension’ (Aghajanyan, Gupta, and Zettlemoyer, 2021). Likewise, (Hu et al., 2022) demon-

strated that the fine-tuning updates∆w themselves exhibit a low ‘intrinsic rank’. Consequently,

one can efficiently parameterize these updates by decomposing ∆w into the product of two
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Figure 8.1 – Regular fine-tuning compared to LoRA adaptation. x and z are the input and output.

low-rank matrices wB and w A . The concept is illustrated in Figure 8.1 and formalized as:

wF T = wPT +∆w (8.1)

= wPT +wB ·w A (8.2)

where w A ∈Rr×n and wB ∈Rm×r for a weight matrix w ∈Rm×n . Here, wF T and wPT denote

the fine-tuned and pre-trained weights, respectively. We initialize one matrix with random

Gaussian values w A ∼ N (0,σ2), and the other as a zero matrix wB = 0, ensuring that the

model’s initial output matches the pre-trained model. During the fine-tuning process, both

the pre-trained weights wPT and the new adapters w A and wB are used to compute the hidden

states z during the forward pass. However, during the backward pass, only the gradients of

low-rank matrices are required to be computed and optimized – the original pre-trained

parameters remain frozen. This selective updating drastically reduces the computational cost

compared to regular ‘full’ fine-tuning.

In practice, there are two additional hyperparameters: a constant scaling factor α and the

rank r ≪ min(m,n). The modified forward pass, where x is the input and z the output, is thus

defined as:

z = wPTx + α

r
wB w A x , (8.3)

Typically LoRA is applied only to the weight matrices in the attention block of transformer-

based models during fine-tuning, while the feed-forward module remains unchanged. This

approach reduces the number of trainable parameters without compromising the integrity

of the pre-trained representations. To the best of our knowledge, LoRA has not yet been

employed to transfer models from human speech processing to the bioacoustics domain.
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8.2.2 LoRA Adapters in Transformers

Having introduced the main principles of Low-Rank Adaptation, we now consider how these

adapters w A and wB are integrated into the Transformer architecture shared by HuBERT and

AVES. Inserting adapters at appropriate locations allows us to adapt large pre-trained models

with minimal parameter updates, while preserving the bulk of the original weights.

Figure 8.2 – Transformer architecture of HuBERT and AVES.

As shown in Figure 8.2, the Transformer model consists of three main modules that transform

raw audio x into context-aware feature representations z :

• Feature extractor: seven 1D convolutional layers of different window lengths and shifts,

alongside GeLU activation functions and LayerNorms. This block operates directly on

the raw waveform, and converts the input audio signal into embeddings of size 512.

• Feature projector: a fully-connected layer, preceded by a LayerNorm and followed by a

Dropout. This layer projects the output of the feature extractor embeddings from 512

into 768 dimensions.

• Transformer encoder: the core of the model, operating on 768-dim vectors, and itself

consisting of:

– One positional encoder: convolutional and GeLU layers that inject relative posi-

tion information.

– Multiple Transformer (encoder) layers: each composed of a self-attention block

and a two-layer feed-forward network. Figure 8.3 illustrates one such layer. Note

that the LayerNorm, Dropouts, skip connections, and activations have been omit-

ted for simplicity.

Figure 8.3 – Simplified transformer encoder layer.
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Within each Transformer encoder layer, there are multiple candidate weight matrices where

LoRA adapters can be inserted to capture task-specific adjustments. In the diagram:

• The self-attention consists of the keys, queries, values (K, Q, V) matrices, as well as the

output linear layer, often referred to as O, but here denoted as FC0. The self-attention

computation is described in Equation (2.8) and (2.9).

• The feed-forward network consists of two fully-connected layers, henceforth referred to

as FC1 and FC2.

LoRA adapters may be added to any of these projection matrices (Q, K, V, FC0, FC1, or FC2),

enabling the model to learn low-rank updates at these points while keeping all other param-

eters fixed. By selecting different combinations of adapter placements, one can tailor the

fine-tuning process to balance between parameter efficiency and adaptation flexibility.

8.2.3 Parameter Pruning and Layer Dropping

Large pre-trained speech foundation models can be over-parametrized for downstream tasks.

Prior work in the literature has shown that structured or adaptive parameter pruning can

reduce model size while preserving strong classification performance (Peng et al., 2023).

Rather than individual weights, layer dropping, i.e. removing entire layers, has also been

investigated as a parameter pruning technique. Numerous layer-dropping strategies such

as top-down, bottom-up, and alternating layer removals have been explored in transformer-

based models, achieving up to 40% reduction in model size with only a 2% drop in downstream

accuracy (Sajjad et al., 2023). Although these approaches have proven effective in NLP, their

application to bioacoustics domain and effectiveness in cross-domain adaptation remains

unexplored.

8.3 Research Questions and Experimental Methodology

This section formalizes the central research questions guiding our investigation into adapting

pre-trained speech and bioacoustic models via LoRA, and defines the experimental design

used to answer them.

8.3.1 Encoder Matrix Selection

Based on the possible adapter insertion points identified in Section 8.2.2, we first explore which

combinations of weight matrices within the Transformer layers yield the greatest downstream

classification performance when fine-tuned with LoRA. We also examine whether extending

LoRA fine-tuning beyond the Transformer encoder, specifically to the feature extractor and

feature projector, also leads to further improvements. To that end, we formulate the following

two research questions:
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Q1. Which subset or permutation of transformer projection matrices (K, Q, V, FC0, FC1, FC2)

is most effective for LoRA-based fine-tuning?

To answer this, we compare the following adapter configurations:

• [FC1, FC2]: the two-layer feed-forward network only.

• [Q, K]: the self-attention query and key projections.

• [Q, K, V]: all three self-attention projections.

• [Q, K, V, FC0]: self-attention as well as the attention output projection.

• [Q, K, V, FC0, FC1, FC2]: all self-attention and feed-forward projections.

We individually fine-tune a pre-trained HuBERT under each of these five different set-

tings on the Train set, and measure UAR on Test, thereby identifying which permutation

delivers the best downstream adaptation.

Q2. Does applying LoRA adapters to the feature extraction and/or feature projection mod-

ules, in addition to the Transformer encoder, improve classification performance?

Although parameter-efficient fine-tuning typically focuses on the Transformer layers

alone, strong acoustic domain shifts, such as moving from human speech to non-

human animal vocalizations, may potentially benefit from adapting earlier, pre-encoder

network components. To investigate this, we compare three configurations:

• Encoder only: LoRA adapters inserted in the Transformer encoder layers only

(baseline). We insert the adapters on the optimal matrix permutation found from

Q1.

• Projector + encoder: adapters applied to both the Transformer encoder and the

feature projection fully-connected layer.

• Extractor + projector + encoder: LoRA adapters are applied to the Transformer

encoder and the feature projection layer, while the feature extractor block is fully

fine-tuned, instead of through LoRA decomposition. This is due to a limitation

in the implementation of the PEFT HuggingFace library, which currently sup-

ports LoRA only on linear modules. However, we keep the feature extractor fully

trainable, such that its convolutional filters can still directly adapt to the specific

characteristics of bioacoustic signals.

We hypothesize that including the feature projector, a simple affine mapping, will yield

additional gains, while adapting the convolutional extractor may have uncertain effects,

given its role in low-level signal processing and the risk of disrupting learned acoustic

filters. Moreover, the impact of full fine-tuning, as opposed to LoRA-based adaptation,

may differ significantly in these components.

By systematically evaluating these configurations on our CTID task with UAR, we will iden-

tify which adapter placement strategy offers the best balance of parameter efficiency and

performance.
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8.3.2 Layer Selection Strategies

Choosing which encoder layers to adapt is an important decision in parameter-efficient fine-

tuning. Rather than fine-tuning all layers, we investigate whether updating only a particular

subset can yield comparable or better performance, and whether there exists a systematic

strategy for selecting these layers. Prior work and previous chapters have shown that initial

layers in speech SSL models work much better than the later layers for bioacoustics tasks. We

therefore ask:

Q3. Which layer selection strategy for the Transformer encoder yields the most effective

performance after fine-tuning ?

Figure 8.4 – Layer selection strategies: (a) bottoms-up. (b) top-down. The numbers corresponds
to transformer encoder layers. Each row represents a different layer permutation, eg. 1, 1–2, 1–3,
etc.

To answer this question, we employ two different layer selection strategies, as shown on

Figure 8.4. For each strategy, we compute all permutations:

• Bottoms-up strategy incrementally adapts the encoder from its lowest layer upwards.

In one permutation, we only use the output embeddings of the first layer, then in the

second combination, we use the ones of the second layer, with the input having gone

through the first two layers, and so on till the final permutation where the input traverses

all the layers and we use the output embeddings of the final layer.

For L total encoder layers, denoted as l1, l2, . . . , lL , we define an independent fine-tuning

configuration for each k ∈ {1,2, . . . ,L}:

Ak = { l1, l2, . . . , lk }, Fk = { lk+1, . . . , lL},

where Ak denotes the set of adapted layers with LoRA adapters, and Fk the set of frozen

layers. We then measure downstream classification performance for each k, thereby

quantifying the incremental contribution of the first k layers to the adaptation process.

Since the later layers typically learn more task-specific information, we hypothesize

that fine-tuning the lower layers could still bring substantial improvements, as these

typically encode more acoustic information.
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• Top-down strategy conversely starts by first adapting the highest-level layer embeddings

only, and progressively includes lower layers. In this case, we define our configurations

as:

A′
k = { lL−k+1, lL−k+2, . . . , lL}, F ′

k = { l1, . . . , lL−k },

where A′
k are the layers adapted with LoRA, and F ′

k are frozen. By evaluating classifica-

tion performance for each k, we assess how the inclusion of progressively lower-level

layers impacts adaptation.

In this strategy, it could be argued that starting adaptation with the top layers could

accelerate the domain adaptation and force the model to learn representations more

relevant to the animal-specific vocalizations.

8.3.3 Fine-Tuning Strategies: Probing, Freezing, and Pruning

Rather than simply freezing unselected layers during LoRA adaptation, parameter-pruning

research detailed in Section 8.2.3 suggests that removing those layers from the model entirely

may further improve efficiency without degrading performance. We therefore compare three

distinct adaptation strategies, and formulate our question as:

Q4. Which approach yields the best downstream performance between (a) simple linear

probing, (b) LoRA fine-tuning with layer freezing, and (c) LoRA fine-tuning with layer

pruning ?

The three scenarios are illustrated in Figure 8.5, and explained below:

(a) Linear probing: All encoder layers remain frozen. We simply extract the output embed-

ding of the selected layer(s), apply mean-pooling, and train a single linear classifier on

top. Note that this scenario is essentially identical to the one used in Chapter 7, with the

key difference that we only employ a single linear classifier instead of an MLP. Using the

same classifier across all adaptation scenarios ensures a fair comparison.

(b) LoRA + freezing: LoRA adapters are inserted into the selected layers and fine-tuned,

while all other layers remain frozen and only participate in the forward pass.

(c) LoRA + pruning: Selected layers receive LoRA adapters and are fine-tuned, but all other

layers are removed from the model, and the classifier is applied directly on the output of

the highest adapted layer.

In all scenarios, we apply the LoRA adapters to the optimal matrix permutation found from

Q1. By evaluating each strategy on both HuBERT and AVES, we can determine whether

dropping unused layers offers any advantage over freezing them, and how both compare to a

classic linear-probing baseline. Finally, to assess which strategy performs best, we conduct all

experiments on both the Abzaliev and IMV datasets.
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Figure 8.5 – Three evaluation scenarios of a pre-trained SSL model using a linear classifier. This
example depicts the case where layers 1–6 are selected and used for classification, while any
remaining layers are either ignored, kept frozen, or pruned, depending on the scenario. a) Linear
probing: all layers of the pre-trained model are frozen. The input signal s passes through the
layers 1–6. The output embedding from layer 6 is extracted and given to a linear classifier, which is
trained. The remaining layers are ignored. b) LoRA fine-tuning with freezing: LoRA adapters are
inserted into the selected layers 1–6, which are adapted, while the others 7–12 remain frozen. c)
LoRA fine-tuning with layer pruning: the model is pruned such that only the selected layers 1–6
are retained and then fine-tuned using LoRA, while all the others are removed from the model
entirely. Note that layers 7–12 are functionally identical in scenarios (a) and (c): they are unused in
both cases. We distinguish them visually to emphasize that in (c) they are explicitly removed from
the model, whereas in (a) they are simply ignored. In each case, the output embeddings of the
pre-trained model are mean-pooled over the temporal axis to produce a single functional feature
vector x . In practice, a LayerNorm layer is also implemented before the linear layer for robustness.

8.4 Results and Analysis

8.4.1 Hyperparameter Selection

Given the large number of fine-tuning configurations and model permutations, we performed

a preliminary grid search on HuBERT to identify a single set of LoRA hyperparameters that

could then be kept constant across all subsequent experiments. The search spanned learning

rate η, rank r , scaling α, dropout, weight decay, and number of epochs.

To ensure these settings generalize across different adaptation structures, we ran the search

independently for each of the five matrix permutations defined in Q1, and for each of the

twelve bottoms-up layer selections while keeping the unselected layers frozen. In total, this

amounted to approximately 900 trials on the CTID task. The hyperparamters optimized in the
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grid search are given in Table 8.1.

Table 8.1 – Search space to find optimal hyperparameters.

Hyperparameters Search Space Optimal Value

α [1, 2, . . ., 60] 3
r [4, 8, . . ., 64] 60
Dropout [0, 0.1, 0.2, . . ., 1.0] 0.3
η 1e[-3, -2, -1] 1e-3
Weight decay 1e-9 – 9.67e-2 8e-09
Max. epochs [1, 2, 3, 4, 5] 5

We found that a low learning rate (10−3), a high adapter rank (r = 60), and a moderate scaling

factor (α = 3) produced consistently strong performance, with optimal dropout of 0.3 and

minimal weight decay (8 ·10−9). These settings balance adaptation capacity against overfitting

risk and are used throughout the rest of our studies.
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Figure 8.6 – Hyperparameter importance on HuBERT, as estimated by the fANOVA algorithm.

The hyperparameter importance plot in Figure 8.6 quantifies each parameter’s contribution to

the variation in downstream UAR, as estimated by the fANOVA algorithm (Hutter, Hoos, and

Leyton-Brown, 2014). The results indicate that adapter rank r is by far the most influential

hyperparameter, reflecting the fact that increasing the latent dimensionality of the LoRA

update substantially enhances the model’s adaptation capacity. Next in importance is layer

selection, confirming that the choice of encoder layers that receive adapters does affect the

performance. The learning rate η remains critical, consistent with its central role in gradient-

based optimization, but ranks below rank and layer decisions. The number of epochs and

batch size exhibit moderate impact, suggesting that training duration and mini-batch stability

provide incremental gains once rank, layers, and η are set. The choice of projection matrices,

formulated in Q1, seems to have only a modest effect once the principal LoRA capacity and

layer locations are determined. Finally, LoRA dropout and weight decay show near-zero

importance, implying that explicit regularization is largely unnecessary under LoRA fine-
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tuning for CTID.

8.4.2 Matrix Selection Results (Q1)
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Figure 8.7 – Best UAR [%] for each LoRA adapter configuration on layers 1–12. Fine-tuning all
matrices yields the best performance.

Figure 8.7 shows the highest UAR score achieved for each of the five different LoRA adapter

matrix configurations defined in Q1. To ensure a fair comparison across matrix combinations,

we fix the selected layers to HuBERT encoder layers 1–12 for all experiments. All results

are obtained on the Abzaliev dataset for the call-type classification (CTID) task. For each

configuration, we report the best UAR achieved across our full hyperparameter sweep. The

results exhibit a clear, monotonic progression:

Q, K < Q, K, V < Q, K, V, FC0 < Q, K, V, FC0, FC1, FC2.

In other words, performance steadily increases as more projection modules are adapted.

Fine-tuning only the query and key projections yields the lowest UAR, with each successive

addition (value, attention output, feedforward layers) leading to higher scores. This progres-

sion highlights that granting the model greater adaptation capacity, by increasing the number

of LoRA-enabled projections, consistently improves downstream accuracy, with the full set of

adapters delivering the best result.

8.4.3 Layer Selection Strategy Results (Q2 & Q3)

Based on the previous results, we fix the matrix permutation to include all the aforementioned

matrices, and now aim to identify which layer selection strategy and permutation yields the

best fine-tuning results.

Figure 8.8 compares the best UAR scores across different layer selection strategies for both

AVES and HuBERT. We observe that in both cases, fine-tuning the feature extraction (FE)

layers severely degrades performance. Fine-tuning the feature projection (FP) alone does not

significantly improve performance relative to other strategies, but it also does not degrade
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Figure 8.8 – Layer selection strategy UAR [%] results: (a) bottoms-up, (b) top-down, (c) FE + FP +
bottoms-up, (d) FP + bottoms-up.

it, suggesting that FP adaptation is optional rather than essential. Furthermore, bottoms-up

and top-down layer selection strategies yield comparable results, generally achieving scores

in the range of 30–40% bracket for all layer permutations. Finally, neither AVES nor HuBERT

consistently outperforms the other across all layer selections. However, HuBERT appears to

perform slightly better in the later layers in the bottoms-up strategy, with or without feature

projection tuning.

8.4.4 Fine-Tuning Strategy Selection (Q4)

In this final research question, we evaluate three paradigms aforementioned in Q4, namely

linear probing, LoRA with layer freezing, and LoRA with layer pruning, applied to the Trans-

former encoder in a bottoms-up layer selection. For fairness, we keep the feature extraction

(FE) and feature projection (FP) modules unchanged, since standalone fine-tuning on these

sub-modules did not yield consistent gains. We run these experiments on both the Abzaliev

and IMV datasets, using AVES and HuBERT feature representations.

Figure 8.9 displays the per-layer UAR performance for each strategy. On the IMV dataset,

LoRA fine-tuning, whether with freezing or pruning, consistently and significantly improves

performance over simple linear probing across nearly all layers when using AVES, and shows

clear gains in the later layers of HuBERT. By contrast, on the smaller Abzaliev dataset, simple

linear probing almost always exceeds either LoRA performance, suggesting that LoRA tuning

offers limited benefit in low-data scenarios. However, this performance gap on Abzaliev is
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Figure 8.9 – Layer-wise UAR [%] performance of scenarios (a), (b), and (c).

modest compared to the substantial gains that LoRA fine-tuning delivers on the larger IMV

dataset. This suggests that LoRA’s advantages scale with dataset size, whereas in lower-data

scenarios a simple linear probe may be more a reliable choice.

We can also observe that in the case of AVES, both LoRA-tuned models display a general

upward trajectory for IMV and Abzaliev, whereas the linear probe continues to follow the

same downward trend when going deeper in the layers, as seen in previous chapters. This

demonstrates that deeper transformer layers in AVES encode increasingly abstract features that

can effectively classify calls, but only when these layers are fine-tuned. A linear probe, which

freezes the backbone, cannot leverage these deeper embeddings, and thus its performance

declines in later layers. In contrast, LoRA injects a small number of trainable parameters into

each layer, providing just enough task-specific flexibility to enable each additional layer to

contribute positively, yielding a steady upward trend in performance. Practically, this implies

that when extracting features from deeper layers within the transformer, one should pair them

with parameter-efficient fine-tuning methods, such as LoRA, rather than relying on a fixed

feature extractor alone.

8.4.5 Classifier Comparison: Linear Layer vs. MLP

The results obtained in the previous Section 8.4.4 can be directly compared, on the same

datasets and feature representations, with those from Chapter 7’s Section 7.3.1. In this chapter,

we fine-tuned models using LoRA with a single linear output layer, as depicted in Figure 8.5,

and compared them to a linear layer baseline. However, in previous chapters, we employed a
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Chapter 8. Adaptation of Speech and Bioacoustics Models

MLP, composed of three blocks of [Linear, LayerNorm, ReLU] layers and a final linear layer, to

evaluate various feature representations.

Figure 8.10 shows the highest scores of each scenario (a–c) from Figure 8.9, across all layers,

alongside the corresponding MLP results from earlier chapters. This allows us to assess the

potential benefit of classifier complexity, specifically, to see whether using a non-linear MLP

really leads to better performance than a single linear layer.
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Figure 8.10 – Best UAR results across layers for the (a), (b), and (c), scenarios defined in RQ4, using
a linear layer classifier, compared to an MLP classifier.

We can observe that for the Abzaliev dataset, the MLP classifier clearly outperforms the

single-layer LoRA variants, (b) and (c), for both AVES and HuBERT, suggesting that the added

classifier capacity and non-linearity does help for CTID. However, for IMV, the opposite holds

true: both single-layer LoRA models yield higher scores than the MLP classifier, indicating

dataset-specific behavior.

Overall, these results do not allow us to draw general conclusions. While increased capacity

may help in some cases, it may not be universally beneficial. Further investigation, such as

fine-tuning a LoRA model with a non-linear MLP classifier, could give deeper insight into the

impact of classifier capacity and non-linearity in this context.

8.5 Conclusions

In this chapter, we studied the potential of parameter-efficient fine-tuning (PEFT) for adapting

large speech and bioacoustic SSLs models. We showed that Low-Rank Adaptation (LoRA) can
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greatly enhance call-type classification of animal vocalizations when sufficient labeled data

is available. We systematically investigated a number of research directions by conducting a

series of controlled experiments regarding LoRA adapter placements, layer selections, and

fine-tuning strategies, and arrived at the following insights:

• Transformer encoder matrix selection: adapting an increasing subset of projection

matrices yields steadily higher performance, with adaptation of entire self-attention

and feed-forward projections achieving the best UAR.

• LoRA adapters scope: extending LoRA adapters beyond the Transformer encoder to

the feature projection layer yields only marginal gains, whereas fine-tuning the convo-

lutional feature extractor consistently and significantly degrades downstream perfor-

mance.

• Layer selection strategy: neither ‘bottoms-up’ nor ‘top-down’ layer selection strategies

clearly outperforms one another. Both produce comparable results when adapters are

placed on the same matrices.

• Fine-tuning strategy: on the larger IMV dataset, LoRA fine-tuning (with either freezing

or pruning) substantially outperforms simple linear probing across nearly all layers. In

contrast, on the smaller Abzaliev dataset, simple linear probing remained more reliable,

though the performance gap was modest. This indicates that LoRA’s efficacy scale with

dataset size.

• Classifier selection: LoRA adaptation with a single linear layer outperforms a deeper

4-layer MLP classifier head on IMV, while the reverse is seen for Abzaliev, indicating

further investigation is needed to draw firm conclusions.

In conclusion, the overall results indicate that low-rank adaptation is a highly effective PEFT

method and powerful tool for bioacoustic classification when ample data is available, enabling

even deep transformer layers to contribute meaningfully. In low-data settings, however, a

classic linear probe may still be preferable.
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Animal Vocalizations

Chapter Schematic Overview
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Publication Note

The material presented in this section is adapted from the following publications:

• E. Sarkar and M. Magimai-Doss (July 2025a). “Leveraging Sequential Structure in

Animal Vocalizations”. In: Idiap-RR-06-2025.

9.1 Introduction

In all the previous chapters, we averaged each data sample’s extracted feature embeddings

x ∈RN×D , into a vocalization-level representations, denoted as functional vectors fµ =µ(x) ∈
RD or fµσ = [

µ(x), σ(x)
] ∈R2D . While these ‘stats-pooled’ representations have proven very

valuable for classification tasks, bandwidth analysis, and model adaptation, they ignore the

sequential aspect of animal calls: each vocalization is treated like an unordered bag of frame-

level feature embeddings. This completely overlooks the fact that many animal arrange

acoustically distinct sub-vocalization units in a specifically ordered sequences that carry

important communicative and syntactic information (Kershenbaum, D. Blumstein, et al.,
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2016). The goal of this final chapter is thus to investigate alternate feature representations that

can capture the sequential structure within animal vocalizations, and leverage the unutilized

temporal information to improve classification performance.

In order to effectively model sub-vocalization unit level sounds, we turn to symbolic speech

tokenization. Recent work has shown that discrete audio tokens obtained through vector-

quantization of ‘continuous’ SSL feature embeddings can effectively encode acoustic informa-

tion, and thus be utilized for many speech and audio tasks (Guo et al., 2025). Based on this

prior, we extend this framework to bioacoustics, and explore whether token sequences can

also reveal meaningful structure in animal vocalizations and help distinguish call-types or

individual callers. A successful framework could even yield an inventory of recurring acoustic

sub-vocalization units in animal communication. To the best of our knowledge, this is the first

work to explore discrete audio tokens for computational bioacoustics. To that end, we investi-

gate vector quantization (VQ) and gumbel-softmax vector quantization (GVQ) as tokenization

methods for capturing the sequential structure in non-human animal vocalizations.

The rest of the chapter is structured as follows. First, Section 9.2 provides a brief overview of

sequences in animal vocalizations. Then, Section 9.3 presents an in-depth review of repre-

sentation learning using discrete audio tokens. Section 9.4 describes our experimental setup,

namely the quantizer training protocol, token sequence generation, and post-processing. In

Section 9.5, we conduct the pairwise distance analysis, and in Section 9.6 we benchmark the

downstream classification performance. Finally, we conclude with implications and directions

for future research in Section 9.7.

9.2 Sequences in Animal Vocalizations

The communicative power of sequences in animal vocalizations is well-documented across

species, with vocal sequences often serving key biological roles such as territory defense,

mate attraction, social bonding, and alarm signaling (Kershenbaum, D. T. Blumstein, et al.,

2016). The complexity of these sequences manifests through distinct patterns of acoustic

units that are combined in species-specific ways, following implicit or explicit syntactic rules.

For instance, songbirds produce vocalizations composed of repeated motifs and notes ar-

ranged in recognizable patterns (Catchpole and Slater, 2003), while cetaceans exhibit intricate,

temporally-structured acoustic sequences associated with social interaction and individual

identification (Mercado and Handel, 2012). Thus, capturing and analyzing the inherent se-

quential structure in animal vocalizations could substantially enhance our understanding of

their communicative function and biological significance.

Several approaches have been proposed in the biological literature to analyze the temporal

and structural complexity of vocalizations. These include methods derived from information

theory and Markovian analyses of transitions between acoustic units (McCowan, Hanser,

and Doyle, 1999), as well as pattern recognition techniques applied directly to acoustic se-

quences (Kershenbaum et al., 2012). However, these biologically-driven studies often rely

82
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heavily on manual annotations or simple acoustic measurements, limiting their scalability

and computational generality.

9.3 Discrete Audio Tokens-based Representation Learning

Many self-supervised speech SSL models, including those we have utilized throughout this

thesis, employ discrete token representations during their pre-training stages. Typically, these

discrete tokens are derived using a quantization process, either through integrated Vector

Quantization (VQ) layers (Baevski, Schneider, and Auli, 2020; Baevski et al., 2020) or offline

clustering mechanisms applied to continuous embeddings (W.-N. Hsu et al., 2021). However,

such discrete representations are primarily intended to facilitate self-supervised learning

objectives, such as masked prediction or contrastive learning, and are usually not directly

exposed or utilized during inference or downstream tasks.

In this chapter, we explicitly leverage the discrete tokenization methodology. To do so, we

first extract window-level embeddings from a pre-trained SSL model, consistent with our

earlier experiments, and subsequently train a separate quantization module which maps

the embeddings into sequences of discrete tokens. Note that the quantization is performed

independently per frame, thereby preserving the temporal order of the original acoustic events

within the vocalization, and is trained separately on extracted embeddings from the pre-

trained encoder, using the bioacoustic data of interest. This allows the codebook vectors to

adapt specifically to the acoustic characteristics and distributions of the vocalizations being

studied.

Figure 9.1 – Discrete call tokenization pipeline using vector quantization.

The overall call tokenization pipeline, employed in this work, using vector quantization is illus-

trated in Figure 9.1. Specifically, a raw audio waveform s is first passed through a pre-trained

encoder F , producing continuous layer embeddings x ∈ RL×N×D , where L is the number

of layers, N the number of frames in each layer, and D the dimension of each frame. Let
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x (l )
n ∈RD denote the embedding extracted from encoder layer l at frame position n. Each layer

embedding is then quantized individually per-frame by a quantization function q , resulting in

discrete tokens t (l )
n = q[x (l )

n ]. Formally, the quantization function maps each embedding from

continuous D-dimensional space to a discrete integer token index q :RD → {1,2, . . . ,V } where

V denotes the vocabulary size, i.e., the number of unique discrete tokens. Each token index

corresponds directly to an entry in a finite set, referred to as the codebook C = {c1,c2, . . . ,cV },

where each code-vector ci ∈RD corresponds to the i -th discrete token in the original embed-

ding space. This discretization step effectively compresses the representation since encoding

tokens only requires ⌈log2 V ⌉ bits per frame.

Detailed descriptions of vector quantization and Gumbel-Softmax vector quantization, which

are the specific methods employed to train these quantization modules, are provided in

Section 9.3.1 and Section 9.3.2, respectively. We specifically leverage them due to their proven

effectiveness in quantizing audio embeddings. Note that these are both examples of single-

codebook quantizers. Most modern acoustic tokenizers have multiple quantizers. However,

for simplicity and clarity, we focus on hand-coded single-codebook ones in this work.

9.3.1 Vector Quantization (VQ)

While traditional clustering methods operate independently of model training, vector quanti-

zation integrates a discrete, learnable codebook directly into the neural network (Den Oord,

Vinyals, and Kavukcuoglu, 2017), enabling end-to-end optimization via gradient propagation

through the quantization step.

We maintain a learnable codebook C = {c1, . . . ,cV } ∈ RV ×D of V = 50 code-vectors, each of

dimension D = 768. Given an input embedding x (l )
n , the quantization process selects the

nearest codebook vector ci by simply minimizing the Euclidean distance between the two:

q[x (l )
n ] = argmin

i∈{1,2,...,V }
∥x (l )

n −ci∥2
2 (9.1)

which returns the token index which is the input’s discrete token. The codebook vector itself,

which we denote as ck ≜ cq(x), is passed on to subsequent networks.

To allow backpropagation through the non-differentiable nearest-neighbor argmin lookup

given in 9.1, a straight-through estimator (STE) (Bengio, Léonard, and Courville, 2013) is

employed to graft gradients from the quantized output ck back to x (l )
n during the backward

pass. The encoder thus receives learning signals from downstream losses, while the codebook

vectors themselves are updated via the VQ loss below. In our case, since we have pre-extracted

embeddings, no encoder is updated, and the downstream losses encourage the extracted

representations to align with their assigned code-vectors, even though only the codebook

parameters are updated. During training, we optimize the VQ loss which is jointly defined as

the sum of the codebook and commitment losses:
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LVQ = ∥sg[x (l )
n ]−ck∥2

2︸ ︷︷ ︸
Codebook Loss

+β∥x (l )
n − sg[ck ]∥2

2︸ ︷︷ ︸
Commitment Loss

.
(9.2)

where sg[·] denotes the stop-gradient operator and the beta coefficient is typically set to

β= 0.25. The codebook loss shifts the selected code-vector ck toward its corresponding input

embedding x (l )
n , whereas the commitment loss conversely encourages the embedding to move

closer to its matched codeword. We iterate LVQ over all the layers L and frames N to compute

the total cost. While one can also update the codebook via an exponential-moving-average

(EMA) scheme (Den Oord, Vinyals, and Kavukcuoglu, 2017), we focus here on the loss-based

updates for clarity. Since the encoder is kept frozen, both terms in practice serve to adapt

the codebook vectors to the distribution of the bioacoustic embeddings, yielding a discrete

vocabulary that best captures their statistical structure.

VQs are unfortunately also known to suffer from codebook collapse, where the codebook

usage is highly imbalanced, i.e. most input embeddings get mapped to a one or two centroids,

while the rest of the codebook remains idle and unpdated, drastically reducing its effective

representation capacity.

9.3.2 Gumbel-Softmax Vector Quantization (GVQ)

To mitigate codebook collapse in the standard VQ, we also implement Gumbel Vector Quanti-

zation (GVQ) (Jang, S. Gu, and Poole, 2017), which uses the Gumbel–Softmax relaxation as a

proxy for classic Softmax and to enable differentiable sampling from a categorical distribution.

Given an input embedding x (l )
n , a linear projection layer computes logits {πi }V

i=1. The relaxed

one-hot vector p ∈∆V −1 is then obtained via:

pi =
exp

(
(logπi + gi )/τ

)∑V
j=1 exp

(
(logπ j + g j )/τ

) , (9.3)

where each gi is an independent sample from the Gumbel(0,1) distribution and τ is a fixed

temperature (set to 1.0). A straight-through estimator is applied so that, during the forward

pass, the highest-probability entry in p is discretized to a one-hot vector, while in the backward

pass gradients flow through p as if the operation were identity.

Training of the GVQ module is driven by an entropy-maximizing loss that encourages uniform

use of all V codewords. Equivalently, this can be written as a KL divergence between p and

the uniform distribution:

LGVQ =
V∑

i=1
pi log

(
pi V

)
(9.4)

In our GVQ implementation, we implement several extensions to improve codebook utiliza-

tion and robustness. First, we augment the KL divergence objective with a tunable weight
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parameter αKL. Second, we add a diversity loss term weighted by a hyperparameter λdiv,

which explicitly penalizes under-utilization of the codebook. Throughout training, we track

two key metrics: the codebook perplexity

PPL = exp
(
−

V∑
i=1

p̄i log p̄i

)
, (9.5)

where p̄i is the average probability of selecting codeword i , and the normalized perplexity

PPL/V . The diversity loss is defined to increase the normalized perplexity, thereby encouraging

the model to make use of a larger fraction of available codewords.

9.4 Experimental Setup

All of our experiments were conducted using the same preprocessing and batching pipeline

to ensure a fair comparison across conditions. For this work, we stuck to HuBERT as our SSL

model for extracting feature embeddings x ∈RL×N×D .

The remaining of this section is organized as follows: Section 9.4.1 gives an outline of the

quantizer training protocol, and Section 9.4.2 provides the overview of the acoustic token

generation, including the sequence post-processing.

9.4.1 Quantizer Training Protocol

We train all of our vector-quantization models on x using the Adam optimizer with a fixed

batch size of 32, running for up to 20 epochs on Train, and evaluating performance on a

held-out Val set to monitor convergence and guard against overfitting. To find the best

hyperparameter settings, we conduct a grid search over two quantizer variants, as given in

Table 9.1.

Table 9.1 – Hyperparameter search space for VQ and GVQ models.

Quantizer Hyperparameter Search Space

VQ
Learning rate 1e[-4, -3, -2]
Commitment cost 0.25
EMA [True, False]

GVQ

Learning rate 1e[-4, -3, -2]
KL weight [0.5, 1.0, 1.5, 2.0]
Diversity weight [0.0, 0.01, 0.05, 0.1, 0.2, 0.5]
Temperature schedule:

Max temperature 2.0
Min temperature 0.1
Decay factor 0.999
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9.5 Distance Analysis

Note that for both quantizer models, the codebook C is shared across all layers L during

training. Having the same symbol inventory for every layer makes the token sequences

directly comparable across layers, and removes the need to have 13 separate vocabulary

sets. Since the codebook must cover the union of all layer manifolds, a codebook-collapse is

unlikely, and much less so than the alternate scenario of layer-specific sub-codebooks.

Each mini-batch therefore contains all layers of every utterance during training: batch tensors

of shape (B ,L, N ,D), corresponding to the batch size, layer index, frame index, and feature

dimension respectively, are reshaped to (B ×L, N ,D), quantized with a V = 50 entry codebook,

and then reshaped back. This allows the quantizer q to see inputs from all layers, but then

generate token sequences t drawn from the common symbol set.

9.4.2 Token Sequence Generation and Post-Processing

After training the quantizer on Train, we generate and save sequences of acoustic discrete

tokens t for each vocalization in the entire dataset as described in the pipeline in Section 9.3.

However, during batch processing, audio waveforms are repeat-padded to match the length of

the longest sample within the batch. This repetition artificially inflates all the token sequences

except one to be longer than the actual audio signals. To account for this, we apply some

post-processing to the sequence by first calculating the effective number of frames of each

data sample. We determine the downsampling factor of a batch by dividing the longest raw

audio length in a given batch by the number of frames in its token sequence. Then, for each

data sample, we compute the effective frame count by dividing its raw audio length by this

factor and rounding the result. Finally, the token sequence for each sample is trimmed to

this effective frame count, yielding a variable-length representation that accurately reflects

the original signal duration and excludes any tokens that result solely from the padding. To

ensure consistency with the original embedding extraction process, we implement verification

mechanisms that confirm sample ordering is maintained throughout the token generation

pipeline.

9.5 Distance Analysis

This section presents a distance analysis for the token sequences to identify any discernible

patterns or correlations once we obtain the token sequences for each vocalization using the

trained quantizers. Specifically, we are interested in observing the intra-class and inter-class

variability to understand the degree with which the generated token sequences are able to

distinguish from one class to another.

We use the Levenshtein distance d(t1, t2), a string metric also known as the edit distance, to

quantitatively measure the distance between a pair of discrete token sequences t1 and t2. The

distance effectively represents the minimum number of ‘edits’, i.e. insertions, deletions, or

substitutions, needed to change one sequence into the other. A distance d = 0 thus means
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that the two sequences are identical. It can go up to at most the length of the longer string.

However, this metric gives an absolute difference between sequences and is misrepresentative

when a pair of sequences have a large difference in lengths. To overcome this issue, we use

the normalized Levenshtein distance, which divides the calculated distance by the length of

the longer sequence d(t1,t2)
max(|t1|,|t2|) , where | · | denotes the length of the sequence. In this case,

the distance is bounded between 0 and 1, representing identical and completely different

sequences respectively. In the case of d = 1, one need to edit every character in the longer

string to transform it into the other.

We compute the pairwise Levenshtein distances for all data samples, grouping each compari-

son into one of the following four possible permutations:

(i •) Intra-caller, intra-calltype: two vocalization samples from the same caller producing the

same call-type. The distance between these is expected be the smallest.

(ii •) Intra-caller, inter-calltype: two vocalization samples from the same caller producing

different call-type.

(iii •) Inter-caller, intra-calltype: two vocalizations from different callers producing the same

call-type.

(iv •) Inter-caller, inter-calltype: two vocalizations from different callers producing different

call-types. The distance between these is expected be the largest.

Figure 9.2 presents the means of the distances distributions of the four aforementioned

categories, using the token sequences generated from the VQ model. We can observe that

groups (i •) and (iv •) behave as expected: they both have the smallest and largest distance,

on average, for all datasets. We also noticeably observe that group (ii •)’s distance is larger

than group (iii •)’s for most datasets. This makes sense intuitively: two vocalizations produced

by the a caller vocalizing different call-types are more likely to be acoustically distinct, than

two generated by different callers vocalizing the same call-type. The discrete acoustic tokens

sequences reflect this distribution, demonstrating their ability to model and capture the

temporal information encoded in vocalizations.
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Figure 9.2 – Layer-wise mean Levenshtein distance between all pairs of VQ token sequences.
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9.6 Classification Analysis

While we can observe similar trends with the GVQ tokens on the Bosshard dataset, as shown

on Figure 9.3, the remaining datasets exhibit some different patterns. Notably, group (ii •)

and (iii •)’s trends are flipped in the Abzaliev dataset, showing that the intra-caller, inter-

calltype distances are smaller than inter-caller, intra-calltype ones. This may be due to the

comparatively large number of callers (80), which increases acoustic variability and makes

it harder to distinguish sequences of the same call-type produced by different callers than

those of different call-types produced by the same caller. Additionally, for Wierucka and IMV

datasets, the pairwise distances in group (iii •) are unexpectedly smaller on average than

in group (i •). This suggests that the GVQ tokens do not consistently preserve fine-grained

caller-specific information as well as the VQ tokens across all datasets.

Taken together, this analysis indicates that the standard VQ discrete token representations are

indeed capable of clustering sufficient acoustic information to discriminate by call-type or by

caller identity, under real-world, left-to-right temporal constraints. The degree of separability

can be measured with a token sequence classification task. The GVQ tokens, however, exhibit

some unexpected patterns and less consistent separability, indicating that they may be less

effective for classification.
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Figure 9.3 – Layer-wise mean Levenshtein distance between all pairs of GVQ token sequences.

9.6 Classification Analysis

Based on the insights of the comparative analysis, in section, we evaluate how well the sequen-

tial nature of token representations can be leveraged for call-type (CTID) and caller (CLID)

classification.

9.6.1 Experimental Setup

We classify the token sequences using the k-Nearest Neighbours (k-NN) algorithm. We use the

pre-computed pairwise Levenshtein distances as our distance similarity matrix, and iterate

over the hyperparameters given in Table 9.2, for each layer, to obtain optimal classification

results. The classifier is trained over Train, and the hyperparameters defined in the search

space are evaluted over Val, using UAR as the optimization criterion. The best hyperparameters

are then used on Test. The predicted label of a sample is determined by applying a majority-

voting framework on the actual labels of the k most similar sequences.
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Table 9.2 – Hyperparameter search space used for training the k-NN classifier.

Classifier Hyperparameter Search Space

k-NN

Number of neighbours k [1, 3, 5, 7, 9]
Neighbour weighting [Uniform, distance]
Distance Levenshtein
Task [CTID, CLID]

9.6.2 Results and Discussion

The CTID results are shown in Figure 9.4 for the VQ and GVQ token sequences. We compare

the results to a neural linear-probing baseline, as employed in the previous chapters, i.e. by

pooling the temporal information into a functional vector fσµ ∈R2D , and classifying it using a

fully-connected layer.
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Figure 9.4 – Layer-wise UAR [%] for CTID using k-NN on token sequences

We can observe that the linear layer clearly outperforms the k-NN-based classification of

token sequences across all four datasets. Surprisingly, the VQ representations also consistently

and substantially perform better than the GVQ ones for all datasets except Bosshard. The same

trend can again observed for the CLID task, shown on Figure 9.5. GVQ especially struggles on

the Abzaliev dataset, essentially achieving chance-level performance. This strongly suggests

that the GVQ codebook has converged to a local optimum, or potentially collapsed to only a

small subset of symbols. In addition, while a single shared codebook can still encode enough

information for call–type discrimination, it is perhaps not expressive enough to preserve the

finer caller-specific nuances that exist in the continuous embeddings.
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Figure 9.5 – Layer-wise UAR [%] for CLID using k-NN on token sequences.
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The overall trends clearly indicate that while discrete token sequences do carry phonotactic

information that can be leveraged, the HuBERT-based feature embeddings still capture much

more meaningful information, even when stats-pooled into a vocalization-level vector. In

other words, the data tokenization process of converting the feature embeddings causes

a higher loss of information than what is gained by keeping and leveraging the temporal

structure of vocalizations at token-level representations.

Although we trained a single codebook, shared across all layers, for both VQ and GVQ, we still

observe that earlier layers tend to yield better performance across tasks, consistent with the

trends reported in previous chapters. This indicates that differences between layers persist

even after discretization, and that sharing a codebook does not diminish the higher capability

of earlier layers in encoding salient and transferable representations.

Table 9.3 – Best UAR [%] scores for each feature across layers. nC is the number of classes for that
dataset and task, and chance performance is calculated as 100/nc . ∆ represents the relative drop
in performance with respect to the linear layer baseline.

Task Dataset nC Chance Linear VQ GVQ ∆VQ ∆GVQ

CTID

Bosshard 7 14.30 48.81 35.20 35.52 27.88 27.23
Wierucka 12 8.30 74.36 54.91 26.23 26.16 64.72
Abzaliev 14 7.14 41.07 25.24 9.78 38.54 76.20
IMV 11 9.10 61.75 40.65 24.94 34.17 59.60

CLID

Bosshard 8 12.50 45.52 31.31 24.65 31.22 45.85
Wierucka 8 12.50 49.60 42.24 18.29 14.83 63.13
Abzaliev 80 1.25 59.09 17.35 2.90 70.64 95.09
IMV 10 10.00 61.28 35.51 13.23 42.05 78.42

Table 9.3 tabulates the highest scores of each feature across layers, and also shows the drop

in performance, denoted with ∆, of the token sequence-based representations compared

to the linear baseline. Similar to the results in previous chapters, we can see that the CTID

classification yields higher scores than CLID across all feature representations. This highlights

that call-types differ in distinct spectro-temporal patterns that token sequences can still

capture, where as caller identity is largely carried by subtler characteristics that are harder

to preserve after vector quantization. This also suggests that discrete tokens need a higher-

resolution to be effective.

Figure 9.6 visually plots the same information. For CTID, discretizing the feature embeddings

with a VQ and GVQ drops the performance across datasets by ∼26-39% and ∼27-79% respec-

tively, when compared to stats-pooling the same features and then classifying with a linear

layer. For CLID, the drop is of ∼15-71% and ∼46-95% respectively. These strong decreases in

performances reveal that perhaps a single VQ or GVQ codebook is not enough to effectively

model the entire animal vocalizations alone, especially for CLID, or the arbitrary codebook

size of V = 50. In our early ablation experiments, however, we did not empirically observe a

significant change in performance when compared to V = 25 or 100. A plausible next step
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Figure 9.6 – Best UAR results across layers for CTID and CLID.

could thus be to train a quantizer model which employs multiple codebooks to retain a richer

set of temporal patterns.

9.7 Conclusions and Future Work

In this chapter, we explored alternate feature representations that could preserve the temporal

structure of animal vocalizations instead of averaging their extracted SSL feature embeddings

into single functional vectors, as in previous chapters. To that end, we investigated and

evaluated whether discrete acoustic token-based feature representations could effectively

improve call-type and caller classification performance.

To address this problem, we first trained a conventional vector quantization and a Gumbel-

softmax vector quantization module to convert the vocalization signals into discrete token

sequences for four different animal datasets. In our initial line of investigation, we conducted

a comparative analysis of the generated sequences using the Levenshtein distance metric.

The results showed that they do encode the sequential structure of animal calls, and exhibit

a degree of separability by call-type or caller identity across all datasets. We then trained a

k-Nearest Neighbour classifier on said representations to evaluate how well they could system-

atically distinguish vocalizations by call-type and caller identity. The results showed that both

representations were significantly weaker than a simple linear-probe baseline for all datasets.

While VQ showed a reasonable performance, GVQ yielded poor scores, nearing chance level

in many cases. Overall, the results indicate that token sequences do encode meaningful se-

quential structure, but the information lost during vector quantization outweighs the benefits

gained from explicit temporal modeling.

The scope for improvements on this topic is fairly large. A direct line of investigation would be

to improve the quantization module to reduce the information loss. Future work should ex-

plore larger, multi-codebook quantization architectures, such as Residual VQs (Juang and Gray,

1982) or Grouped VQ (Jégou, Douze, and Schmid, 2011). Wav2Vec2 notably employs a grouped

VQ module with G = 2 codebooks of size V = 320. Knowing that its feature embeddings gave

a similar performance to HuBERT for Marmoset caller detection in Chapter 4 (Sarkar and

92



9.7 Conclusions and Future Work

Magimai.-Doss, 2023), evaluating its token sequences against a matched linear-probe baseline

could give meaningful insights.

Another direction of future work could explore more sequence post-processing techniques,

such as deduplication, i.e. removing consecutive duplicate tokens (X. Chang et al., 2024), or

acoustic byte-pair encoding (BPE) (Gage, 1994). These can further reduce the sequence length

and tighten the alignment between tokens and acoustically meaningful sub-units, which

could be particularly useful for vocalizations whose acoustic structure changes slowly.

In summary, despite the promise of symbol-based sequence modeling, this chapter confirms

that simple stats-pooled functional vectors remain a highly effective representation for bioa-

coustic classification tasks, even though they don’t directly leverage the temporal structure of

animal vocalizations.
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10.1 Conclusions

Non-human animal vocalizations encode a wide range of information, such as call-type and

caller identity. This thesis studied the transfer of representations learnt from human speech,

in a self-supervised learning framework, to decode animal vocal communication. We focused

our investigations on a handful of research questions addressed across the different chapters

of this thesis, using vocalizations of dogs, marine mammals, and especially marmosets.

We first investigated the notion of speech-to-vocalizations cross-transferability and discussed

the potential of domain-agnostic pre-training of speech self-supervised learning (SSL) models

for decoding animal calls. We argued that, since these models use only the intrinsic structure

of a given input signal to extract essential information onto an embedding space, indepen-

dent of its acoustic domain, their utility should not be limited to modeling human speech

alone. Building on this understanding, we conducted a caller detection study on marmoset

vocalizations as a proof-of-concept, using eleven pre-trained SSL models and the InfantMar-

mosetsVox dataset. Our results showed that the embedding spaces did carry meaningful caller

information, and enabled us to systematically and successfully distinguish individual identi-

ties of marmoset in a binary classification framework without any downstream fine-tuning.

This was the first study to demonstrate that human speech-learnt representations transfer to

non-human animal vocalizations – a finding that has since been further corroborated on other

taxa, such as gibbons (Cauzinille et al., 2024) or bats (Heer Kloots and Knornschild, 2024).

We also extended and validated our approach beyond a binary caller detection task on a single

dataset, to multi-class call-type classification, caller identification, and caller sex identification

across multiple datasets. In addition to SSLs, we explored alternate feature representations,

namely an end-to-end acoustic model, and a hand-crafted Catch22 baseline. Through com-

prehensive experiments, we demonstrated that SSL-based feature representations and end-

to-end acoustic modeling led to better systems than Catch22 features for call-type and caller

classification, and achieved comparable performances for sex identification at an identical

sampling rate. Furthermore, we observed that the lower SSL layers were much more salient
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representations and yielded higher scores for all three tasks across all datasets than the higher

layers.

We also shifted our perspective from evaluating performance across tasks and datasets, to

scrutinizing and questioning the utility in applying ‘off-the-shelf’ SSL models to marmoset

call analysis, and by extension animal vocalizations in general. SSL models are typically

pre-trained at a bandwidth of 8 kHz, which mismatches with the higher-frequency acoustic

vocalizations and auditory range of marmosets, leading to a significant loss of biologically

relevant information. Our experiments revealed that increasing the bandwidth size yields

a monotonic improvement in classification performance, highlighting that pre-trained SSL

models can be highly effective for bioacoustic tasks, provided their training bandwidth aligns

with the vocal frequency range of the target species.

As the field evolved while this thesis was in progress, a new generation of models pre-trained

directly on bioacoustic data began to appear, outperforming strong baselines across animal

benchmarks (Hagiwara, 2023a). We explored whether these specialized models actually offered

a significant advantage over those pre-trained on speech. Surprisingly, the head-to-head

comparison results showed that bioacoustics-trained models only yielded marginal gains in a

few select contexts, and otherwise matched the performance of speech-pretrained networks.

In addition, it was also unclear how models pre-trained on human speech compared to those

trained on general audio. Results showed that general audio performed comparably to those

pre-trained on speech, suggesting that it is the domain-agnostic self-supervised pre-training

itself, i.e. the way the model is encouraged to discover intrinsic structure in any audio signal,

rather than the specific acoustic domain, that endows these networks with cross-domain

generalizability.

Beyond training classifiers on features extracted from frozen pre-trained models, we also

investigated directly fine-tuning them. First, we investigated whether fine-tuning speech pre-

trained models on automatic speech recognition (ASR) task in a supervised framework could

introduce an inductive bias, enhancing them for bioacoustic classification. However, this pro-

duced mixed results, offering no consistent improvement, suggesting that the general-purpose

representations learned during SSL pre-training were already well-suited for bioacoustic tasks.

We then explored whether fine-tuning pre-trained speech or bioacoustics SSL models directly

on the downstream animal data would yield better performance. We demonstrated that these

models can be successfully adapted to improve call-type classification performance when

ample labeled data is available, and can substantially improve performance compared to a

simple linear classifier.

Finally, we looked at alternate feature representations which could preserve the sequential

structure of animal vocalizations, instead of pooling them into a single functional vector,

and leverage the encoded temporal information to improve performance on call-type and

caller identity classification. We trained vector quantizers transform extracted feature em-

beddings into discrete acoustic token sequences, and then classify them using a k-Nearest

96



10.2 Limitations and Future Directions

Neighbour classifier. However, the results showed that token-based feature representations

were substantially weaker for both tasks, than a simple linear-layer applied to the stats-pooled

functional vector. This highlighted the latter’s effectiveness as a feature representation for

animal vocalization classification tasks.

Taken together, these studies establish that self-supervised speech, as well general audio

classification models, constitute a powerful, domain-agnostic toolkit and offer a remarkably

versatile starting point for decoding non-human animal vocal communication. This thesis

provides a practical and robust framework for advancing bioacoustic analysis, that can be

readily extended to new species, recording conditions, and behavioral contexts. As SSL models

continue to evolve, our framework and findings point the way toward increasingly sensitive,

scalable bioacoustic systems with minimal species-specific feature engineering.

10.2 Limitations and Future Directions

Most contributions of this thesis have been at a foundational-level, focusing on leveraging

technologies developed for human speech, and demonstrating their feasibility or adaptability

for non-human animal vocalizations. The next step would be to leverage these findings to

develop these frameworks from proof-of-concepts into full applications and tools for further

research. There are several directions that could be expanded on for future research:

Automated vocalization detection: in this thesis, we always assumed pre-segmented calls,

and did not investigate the detection of animal vocalizations within audio recordings. De-

veloping robust call detection methods which can work in-the-wild are of particular interest,

as bioacoustics data comes from challenging, un-controlled, and noisy environments, and

domain experts in animal calls are very rare. Developing robust automated vocalization de-

tection systems is of significant value as it can vastly reduce the amount of manual expert

interventions needed. The same SSLs feature embeddings can likely be very easily leveraged

for this task. Alternate unsupervised and computationally efficient signal-processing based

techniques could also advantageous over deep learning-based methods as they are often more

interpretable for linguistic research.

Caller diarization in multi-speaker recordings: progressing from animal caller identity classi-

fication to full caller diarization would be extremely valuable to researchers collecting data

with multiple individuals vocalizing in the same audio recording. Human speech diarization

is large field with a rich history. Off-the-shelf speech-diarization frameworks could likely

provide a starting point, but adapting to animal-specific needs will provide significant value

and benefit.

Linking tokens to acoustic and biological correlates: If more complex quantizers, such as

residual or grouped VQs, can surpass linear-probing baselines, one could leverage discrete

acoustic tokens to develop an inventory of sub-vocalization units per species. Such a token

lexicon could open up novel research directions in computational bioacoustics, particularly
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in understanding combinatorial structure within animal calls, and drawing closer parallels

with phonemic organization in human language. However, a more detailed acoustic and

spectral investigation is needed to meaningfully ground these discrete units in biology. This

includes analyzing their spectral and temporal properties, such as pitch, duration, vocal tract

resonances, and harmonic structure, and identifying how these potentially relate to known

physiological or behavioral correlates. Doing so could help clarify whether particular tokens

correspond to biologically meaningful units, such as arousal, social intent, or vocal production

mechanisms. Future work could also consider species-specific signal analyses, as articulatory

constraints and communicative functions vary widely across species.

Cross-species transfer and generalisation: in this thesis we focused on the transferability of

human speech or general audio to animal vocalizations. Cross-species transfer remains an

open-question. Evaluating how well SSL models or quantizers trained on one species transfer

to others could give reveal the broader applicability of feature embeddings or symbolic audio

representations.
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