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e Studies took inspiration from human e Limited understanding of animal vocal
speech feature representations: communication.
o LP coefficients, MFCCs. e Lack of prior knowledge on relevant
o HCTSA, C22. acoustic information for animal calls.
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e Can leverage unlabelled data and learn general representations.

e Has successfully shown state-of-the-art results on speech downstream tasks.
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Commonality: a production (and perception) system.

Enables: communication through structured acoustic signals.
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Thesis Hypothesis

e Human and animal vocalizations are inherently structured signals that encode meaning.

e S5SSLs do not explicitly incorporate prior knowledge about underlying production systems.

e Learns to identify the intrinsic structure in the acoustic signal.

= Hypothesis: speech representations learnt in a SSL framework, can transfer to the

bioacoustics domain, and help decode animal vocalizations.
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Thesis Contributions 1: Transferability of SSL Representations

Can representations learnt from human speech through SSLs be transferred to

bioacoustic tasks?

» To what extent?

»  How do SSLs features compare to handcrafted features or end-to-end models 7
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« Animal vocalizations can go in high frequency ranges compared to human speech.
« Speech SSLs typically pre-trained at 8 kHz bandwidth.

How does this bandwidth mismatch between humans and animals affect this transfer?
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Pre-trained

performance, increasing monotonically. SSL
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Is this transferability limited to speech models?

»  SSL pre-training is designed to learn general, domain-agnostic features.

» Can representations learnt from other domains also exhibit this transferability?
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=20

12




RQ1 RQ2 RQ3 RQ4
O-->0-->0--+0
Thesis Contributions 4: Model Adaptation

13




RQ1 RQ2 RQ3 RQ4
O-->0-->0--+0
Thesis Contributions 4: Model Adaptation

« So far: extracted features from frozen pre-trained models.

° Feature Trained &

Classifier Scores
Animal Pre-trained representations

vocalization

on speech

%

13




RQ1 RQ?2 RQ3 RQ4
== - -

O-->0-->0--+0
Thesis Contributions 4: Model Adaptation

« So far: extracted features from frozen pre-trained models.

Can adaptation of these pre-trained SSL models further improve the transferability?

° Feature Trained &

Classifier Scores
Animal , .
Fine-tuned representations

vocalization

on bioacoustics

@

13




RQ1 RQ?2 RQ3 RQ4 RQ5

O-->0-->0-->0-->0
Thesis Contributions 5: Leveraging Sequential Structure

14




RQ1 RQ?2 RQ3 RQ4 RQ5

O-->0-->0-->0-->0
Thesis Contributions 5: Leveraging Sequential Structure

How can we capture the sequential structure of animal vocalizations?

14




RQ1 R

Q2 RQ3 RQ4 RQ5
0 >0 >0 >0+

Thesis Contributions 5: Leveraging Sequential Structure

How can we capture the sequential structure of animal vocalizations?

RN XD

Feature

(11,0)

Extractor

Stats-pooling

Animal Extracted
vocalization SSL % Variable-

‘eatures.

ength.

RZD
é -
Functionals f,;
Concatenated statistics. "

Fixed-length.

14




RQ1 R

Q2 RQ3 RQ4 RQ5
0 >0 >0 >0+

Thesis Contributions 5: Leveraging Sequential Structure

How can we capture the sequential structure of animal vocalizations?

» Each vocalization treated like an unordered collection of frame-level features.

Feature

RN XD

(11,0)

Extractor

Stats-pooling

Animal Extracted
vocalization SSL % Variable-

‘eatures.

ength.

RZD
é -
Functionals f,;
Concatenated statistics. "

Fixed-length.

14




RQ1 RQ2 RQ3 RQ4 RQ5
O-->0-->0-->0-->0
Thesis Contributions 5: Leveraging Sequential Structure

How can we capture the sequential structure of animal vocalizations?

» Each vocalization treated like an unordered collection of frame-level features.

RN XD

- Discrete representations
—> Quantizer —)@ @ @ @ Classifier

Feature
Extractor

Token Sequence t %
Animal X Extracted features. Applied
vocalization SSL Variable-length. oer frame
o

2

14




RQ1 RQ2 RQ3 RQ4 RQ5
O-->0-->0-->0-->0
Thesis Contributions 5: Leveraging Sequential Structure

How can we capture the sequential structure of animal vocalizations?

» Each vocalization treated like an unordered collection of frame-level features.

> Can discrete token representations leverage temporal information?
RNXD

- Discrete representations
—> Quantizer —)@ @ @ @ Classifier

Feature
Extractor

Token Sequence t %
Animal X Extracted features. Applied
vocalization SSL Variable-length. oer frame
o

2

14




RQ1 RQ2 RQ3 RQ4 RQ5
O-->0-->0-->0-->0
Thesis Contributions 5: Leveraging Sequential Structure

How can we capture the sequential structure of animal vocalizations?

» Each vocalization treated like an unordered collection of frame-level features.

> Can discrete token representations leverage temporal information?
RNXD

- Discrete representations
—> Quantizer —)@ @ @ @ Classifier

Feature
Extractor

Token Sequence t %
Animal X Extra.cted features. Applied
vocalization SSL Variable-length. oer frame
“%
Finding

Token sequence representations are weaker than the stats-pooled representations.

14




Thesis Contributions

-

>

>0---»>

15



Vlarmosets

Vocalizations, Datasets, Tasks

Carmem A. Busko. Callithrix jacchus, Wikipedia.




Marmoset Vocalizations

Carmem A. Busko. Callithrix jacchus, Wikipedia.

17




Marmoset Vocalizations

e Highly vocal nature rooted in a complex social system.

Carmem A. Busko. Callithrix jacchus, Wikipedia.

17

Agamaite, J. A. et al. A quantitative acoustic analysis of the vocal repertoire of the common marmoset. (2015). The Journal of the Acoustical Society of America 138(5), pp. 2906—2928.




Marmoset Vocalizations

e Highly vocal nature rooted in a complex social system.

- Acoustically diverse call repertoire.

Carmem A. Busko. Callithrix jacchus, Wikipedia.

1s000.0- Pre-Phee  1: Phee - 2: Twitter 3 Trill ~4: Trillphee  5:Tsik Tse ~  6: Egg _7: PheeCry  8: TrllTwitter 9: Pheetwitter  10: Peep
L, 12000~ I ; - ] ] R —
% 8000 - - L — s e _‘—’  pm—t )
8 4000 : - - : . - e —
L
0 -=— — -k i B . . - | -— —ll [——

17

Agamaite, J. A. et al. A quantitative acoustic analysis of the vocal repertoire of the common marmoset. (2015). The Journal of the Acoustical Society of America 138(5), pp. 2906—2928.




Marmoset Vocalizations

Highly vocal nature rooted in a complex social system.

®

- Acoustically diverse call repertoire.

- Ability to encode a range of information.

Carmem A. Busko. Callithrix jacchus, Wikipedia.

16000_O: Pre-Phee  1: Phee 2 Twitter  3: Trill ~4: Trillphee  5: 'I'E,ikTse - 6:Egg _7:fheeCry 8: TrllTwitter 9: Pheetwitter  10: Peep
gaooo- : — - - A el — - - _——

;?4000— : : : . == P —a— : _— :
- . . s . i e o } | . - e . B

17

Agamaite, J. A. et al. A quantitative acoustic analysis of the vocal repertoire of the common marmoset. (2015). The Journal of the Acoustical Society of America 138(5), pp. 2906—2928.




Marmoset Vocalizations

e Highly vocal nature rooted in a complex social system.
- Acoustically diverse call repertoire.

- Ability to encode a range of information.

e Remarkable vocal adaptability allows them to modify their calls:
3: Trill ~4: Trillphee  5:Tsik Tse ~ 6: Egg ~7:PheeCry  8: TrllTwitter 9: Pheetwitter  10: Peep
) B ~ == =
3 B | e B B
% ,-!!-" _’_—-—£ i = _ —_—
;? 4000 — =
- 0 - e _-—— - = — - i SRS . S

17

Agamaite, J. A. et al. A quantitative acoustic analysis of the vocal repertoire of the common marmoset. (2015). The Journal of the Acoustical Society of America 138(5), pp. 2906—2928.




Marmoset Vocalizations

e Highly vocal nature rooted in a complex social system.
- Acoustically diverse call repertoire.

- Ability to encode a range of information.

e Remarkable vocal adaptability allows them to modify their calls:
- Duration - Complexity
- Intensity - Timing
o0 Pre-Phee  1:Phee  2:Twitter ~ 3:Trill 4 Trillphee  5:TskTse  6:Egg  7:PheeCry 8: TrilTwitter 9: Pheetwitter  10: Peep
_ o~ ~ —— et _ —_——
= | = | =y =

17

Agamaite, J. A. et al. A quantitative acoustic analysis of the vocal repertoire of the common marmoset. (2015). The Journal of the Acoustical Society of America 138(5), pp. 2906—2928.




Marmoset Vocalizations

e Highly vocal nature rooted in a complex social system.
- Acoustically diverse call repertoire.

- Ability to encode a range of information.

e Remarkable vocal adaptability allows them to modify their calls:
- Duration - Complexity
- Intensity - Timing

e Vocal characteristics align them closely with human speech properties:

17

Agamaite, J. A. et al. A quantitative acoustic analysis of the vocal repertoire of the common marmoset. (2015). The Journal of the Acoustical Society of America 138(5), pp. 2906—2928.




Marmoset Vocalizations

e Highly vocal nature rooted in a complex social system.
- Acoustically diverse call repertoire.

- Ability to encode a range of information.

e Remarkable vocal adaptability allows them to modify their calls:
- Duration - Complexity
- Intensity - Timing

e Vocal characteristics align them closely with human speech properties:
- Turn-taking - Categorical perception of sounds

- Care-giving to infants - Cooperative breeding

17

Agamaite, J. A. et al. A quantitative acoustic analysis of the vocal repertoire of the common marmoset. (2015). The Journal of the Acoustical Society of America 138(5), pp. 2906—2928.




Marmoset Vocalizations

e Highly vocal nature rooted in a complex social system.
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e Remarkable vocal adaptability allows them to modify their calls:
- Duration - Complexity
- Intensity - Timing

e Vocal characteristics align them closely with human speech properties:
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- Care-giving to infants - Cooperative breeding
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e Manually annotated by researcher.
e 3 marmoset datasets (D, D,, D).

Yun et al. Modeling Parkinson's disease in the common marmoset (Callithrix jacchus):
Overview of models, methods, and animal care (2023). Laboratory Animal Research.

D Dataset S L _ | 127 ms

117 ms
D; IMV 72,920 464
Dy Bosshard 13, 808 37
D3 Wierucka 4,901 138

S: number of samples, L: total length [minutes]. Duration (s)
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Marmoset Vocalization Tasks

e Data pre-segmented: e 3 classification tasks:

o CTID: Call-type identification.
o CLID: Caller identification.

o SID: Sex identification.

o Vocalization detection not needed.

o Removed silence and noise.

Start End Start End Start End
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5 . Silence ; Noise : : D5 7 8 2

D4 12 S 2
Segment Segment Segment -
Call-type: Trill Call-type: Phee Call-type: Twitter Number of classes per task.
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SSL Embedding Spaces

o 11 selected SSL models pre-trained on speech.

Feature o
—> —_— Classifier
Extractor

| Feature
Animal l representations
vocalization 5 (Last layer)
O
SSL
pre-trained

on speech

SVM

Model Corpus
APC LS 360
VQ-APC LS 360
NPC LS 360
Mockingjay LS 100
TERA LS 100
Mod-CPC LL 60k
Wav2Vec?2 LS 960
Hubert LS 960
DistilHubert LS 960
WavLM LS 960
Data2Vec LS 960

LS: LibriSpeech, LL: Libri-Light.
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o 11 selected SSL models pre-trained on speech.

e Pre-trained using different types of pre-text tasks.
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SS I— E M bed d I ng S pa CES Resu |tS Caller detection task on D; (binary problem).

_ Model Corpus SVM

o 11 selected SSL models pre-trained on speech.
Pre-trained using different types of pre-text tasks APC LS 360 79.16
* 5 yP P ' VQ-APC LS 360  78.45

it | VM.
e Classify segments using S NPC 1S 260 - 3
Mockingjay LS 100 78.44
TERA LS 100 74.03
S B B Mod-CPC ~ LL 60k  75.96
> Egractor > Classitier Wav2Vec2 ~ LS 960  75.85
— Hubert LS 960 75.064
Feature SVM .
Animal l representations DistilHubert LS 960 76.20
vocalization (Last layer) WavLM LS 960 (8.60
Data2Vec LS 960 73.04
SSL 1 S: LibriSpeech, LL: Libri-Light.

pre-trained

Macro AUC scores [%]| on Test with 5-fold CV.
on speech
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_ Model Corpus SVM

o 11 selected SSL models pre-trained on speech.
Pre-trained using different types of pre-text tasks APC LS 360 79.16
e Pre-trained using different typ pre- . VQ-APC 1.9 360 QA
o Classify segments using SVM. NPC IS 360 -7 29
~ Representations capable of classifying animal calls. Mockingjay LS 100 78.44
TERA LS 100 74.03

Mod-CPC LL 60k 75.96
Wav2Vec2 LS 960 75.85

Hubert LS 960 75.64
el DistilHubert LS 960 76.26
1 Drtiuber WavLM LS 960 78.60
Eﬂégiﬁgjay Data2Vec L.S 960 73.04

Vo LS: LibriSpeech, LL: Libri-Light.
e Macro AUC scores [%] on Test with 5-fold CV.
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SSL Embedding Spaces Results

o 11 selected SSL models pre-trained on speech.

e Pre-trained using different types of pre-text tasks.

e Classify segments using SVM.

» Representations capable of classitying animal calls.

»  WavLM: competitive results in speech and

bioacoustics — used in follow-up work.
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WavLM
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APC LS 360 79.16
VQ-APC LS 360 78.45
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Hubert LS 960 75.64
DistilHubert LS 960 76.26
WavLM LS 960 78.60
Data2Vec LS 960 73.04

0.0 0.2 0.4 0.6 0.8 1.0
FPR

LS: LibriSpeech, LL: Libri-Light.
Macro AUC scores [%]| on Test with 5-fold CV.
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o 11 selected SSL models pre-trained on speech.

e Classify segments using SVM.

>

>

>

>

Pre-trained using different types of pre-text tasks.

Representations capable of classifying animal calls.

WavLM: competitive results in speech and

bioacoustics — used in follow-up work.

Limitations:
Last layer.

Single dataset.
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VQ-APC LS 360 78.45
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Mod-CPC LL 60k 75.96
Wav2Vec2 LS 960 75.85
Hubert LS 960 75.64
DistilHubert LS 960 76.26
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Data2Vec LS 960 73.04
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FPR
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Macro AUC scores [%]| on Test with 5-fold CV.
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ClaSS|flcat|On Resu |tS UAR [%] scores on Test on features at 16 kHz.

Best layer's results are shown for WavLM.

Dataset Feature CTID CLID SI1D

022 37.72 3454 N/A
D; WavLM  60.10 67.47 N/A
E2E 53.03 59.94 N/A
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ClaSS|flcat|On Resu |tS UAR [%] scores on Test on features at 16 kHz.

Best layer's results are shown for WavlLM.

Dataset Feature CTID CLID SID
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Best layer's results are shown for WavLM.

Dataset Feature CTID CLID SID

e WavLM: 'best’ layer yields robust performances 022 3772 3454 N/A
D1 WavLM 60.10 67.47 N/A
on all 3 datasets and tasks. RO 53.03 5994 N/A
® What about other Iayers 7 022 39.69 39.32  58.14
D WavLM 56.77 46.05 63.80
E2E 37.65 36.21  60.15
C22 52.59 39.43 57.32
D5 WavLM 80.38 55.58 74.26
Feature -
> Classifier E2E 66.24 31.31  56.59
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WavLM Layer Analysis
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- Layer-wise UAR scores of WavLM features, normalized [0,1] per task.
-Layer O corresponds to the output of the CNN encoder.
- Darker regions indicate a higher performance.
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WavLM Layer Analysis

e TIrend: lower layers are more salient

1

representations.

IC SF
D

2

Tasks

SID ASV SD KS ASR PR

Ds D
SID CLIDCTID SID CLIDCTID CLIDCTID

10 11 12

- WavLM layer importance distribution per task. - Layer-wise UAR scores of WavLM features, normalized [0,1] per task.
- Softmax normalization per row. -Layer O corresponds to the output of the CNN encoder.
- WavLM base+ model. - Darker regions indicate a higher performance.
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WavLM Layer Analysis

e TIrend: lower layers are more salient

representations.

e WavLM: lower layers tend to capture
fundamental acoustic features: later

layers perform on linguistic tasks!.

»  Lower layers: generalize better to other
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» Later layers: appear more specialized

for human speech, and consequently

much less transferable to bioacoustics. - Layer-wise UAR scores of WavLM features, normalized [0,1] per task.

-Layer O corresponds to the output of the CNN encoder.
- Darker regions indicate a higher performance.

24
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Key Takeaways

e Representations of speech SSLs can classify bioacoustics vocalizations, even

without fine-tuning.

e Lower layers of these SSLs are significantly more salient than later layers for the

conducted bioacoustics tasks.
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Pre-Training Domain - Feature Representations

Pre-training Pre-training Pre-training

on human speech on bioacoustics on general audio
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HuBERT: AVES-Bio:
e Librispeech 960h. e FSD50K, AS, VGGSound.

e Similar pre-training as WavLM. e 360 hours of animal classes.

Acoustic Unit Discovery System | Acoustic Unit Discovery System
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Pre-Training Domain - Feature Representations

: Pre-training Pre-training Pre-training
on human speech L on bioacoustics | on general audio
| ! L oy = ’
: b :

HuBERT: AVES-Bio: BYOL.:

e Librispeech 960h. e FSD50K, AS, VGGSound. e Full AudioSet.

e Similar pre-training as WavLM. e 360 hours of animal classes. e Different architecture.

Acoustic Unit Discovery System | Acoustic Unit Discovery System
(e.g., K-means on MFCC) E (e.g., K-means on MFCC)
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Pre-Training Domain Analysis

UAR scores [%] on D; Test. Best layer scores are shown.

F Type Corpus CTID
Chance - - 9.09

AVES oo L FSD, AS, VGG-S5  62.54
HuBERT SSL L5960 64.35
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UAR scores [%] on D; Test. Best layer scores are shown.

e Marginal difference in performance - i Type Corpus CTID
can vary on datasets and contexts. Chance - - 9.09
AVES SSL FSD, AS, VGG-S 62.54

e AVES & HuBERT both show that HuBERT SSL  LS960 64.35

initial layers are important.
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Pre-Training Domain Analysis

UAR scores [%] on D, Test. Best layer scores are shown.

e Marginal difference in performance - F Type Corpus CTID
can vary on datasets and contexts. Chance - ] 9.09
AVES SOL FSD, AS, VGG-S  62.54

e AVES & HuBERT both show that HuBERT SSL  LS960 64.35
BYOL SO L AS 63.64

initial layers are important.

> Trend not limited to speech models.

e All 3 SSLs yield comparable results
despite differences in pre-training

domain, architecture, and objective.
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Pre-Training Domain Analysis

UAR scores [%] on D, Test. Best layer scores are shown.

e Marginal difference in performance - F Type Corpus CTID
can vary on datasets and contexts. Chance - ] 9.09
AVES SOL FSD, AS, VGG-S  62.54

e AVES & HuBERT both show that HuBERT SSL  LS960 64.35
BYOL SO L AS 63.64

initial layers are important.

> Trend not limited to speech models. Key Takeaway

o All 3 55Ls yield comparable results | Self-supervised pre-training itself that allows
despite differences in pre-training these models to learn general representations

domain, architecture, and objective. with cross-domain transferability.
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e Investigate: does fine-tuning the same SSL models directly on the downstream
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» Adapt HUBERT and AVES.
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Model Adaptation

e Investigate: does fine-tuning the same SSL models directly on the downstream

bioacoustic data yields better results 7

» Adapt HUBERT and AVES.
>  Focus only on CTID.

e Multiple studies: matrix selection, layer selection strategy, fine-tuning strategy.

: &
Feature Trained @&
Fine-tuned representations

on bioacoustics

O
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Parameter Efficient Fine-Tuning and Low-Rank Adaptation

1 Aghajanyan et al., Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning, (2021) ACL-IJCNLP.
2Hu, E.J. et al., LoRA: Low-Rank Adaptation of Large Language Models (2022). International Conference on Learning Representations. 32




Parameter Efficient Fine-Tuning and Low-Rank Adaptation

_ _ 1. Pre-training
e Fine-tuning on a downstream task: 2nd

step of the SSL framework. , ,"\"n Pre-text
Task

Unlabeled corpus

raining criterion

Representations

|
|
|
|
|
|
]
|
|
|
Y

Downstream

Task

Labeled data 2. Fine-tuning

1 Aghajanyan et al., Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning, (2021) ACL-IJCNLP.
2Hu, E.J. et al., LoRA: Low-Rank Adaptation of Large Language Models (2022). International Conference on Learning Representations. 32




Parameter Efficient Fine-Tuning and Low-Rank Adaptation

Regular Fine-Tuning

e Fine-tuning on a downstream task: 2nd

step of the SSL framework.

e Full fine-tuning: entire parameter set

updated = computationally expensive

and requires large quantities of data. Frozen

Pre-trained
Weights

Wpt

1 Aghajanyan et al., Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning, (2021) ACL-IJCNLP.
2Hu, E.J. et al., LoRA: Low-Rank Adaptation of Large Language Models (2022). International Conference on Learning Representations. 32




Parameter Efficient Fine-Tuning and Low-Rank Adaptation

. . Regular Fine-Tuning
e Fine-tuning on a downstream task: 2nd

step of the SSL framework.

: - . wrr = wpt + Aw
e Full fine-tuning: entire parameter set |

updated = computationally expensive

and requires large quantities of data. Frozen

. Weight
PEET . Nt q Pre-trained Undate

® approach: strategically update Weights pA
W
only a small subset = reduced cost. Wpr
1 Aghajanyan et al., Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning, (2021) ACL-IJCNLP.
32

2Hu, E.J. et al., LoRA: Low-Rank Adaptation of Large Language Models (2022). International Conference on Learning Representations.




Parameter Efficient Fine-Tuning and Low-Rank Adaptation

LoRA Fine-Tuning

e Fine-tuning on a downstream task: 2nd

step of the SSL framework.

WrpT — WpT T WRB - WA

e Full fine-tuning: entire parameter set |

updated = computationally expensive @ ————4 .~ e .
and requires large quantities of data. Frozen N/b; ........ " B=O ........ :
. Pre-trained < Low-Rank
e PEFT approach: strategically update Weights = ? . Parametrized
only a small subset = reduced cost. Wpr | Weight Update:

AW = Wp - Wy

llllllll

~ Low-Rank Adaptation (LoRA):

approximate Aw with 2 smaller matrices.

1 Aghajanyan et al., Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning, (2021) ACL-IJCNLP.
2Hu, E.J. et al., LoRA: Low-Rank Adaptation of Large Language Models (2022). International Conference on Learning Representations. 32
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Adaption - Fine-Tuning Strategy

Input signal Features Predicted
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3 scenarios: - T T T, i [ e ,\
Layer y
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(a) Linear probing. \ . )
Frozen layers: Pruned layers:
~ pre-trained model is used as feature extractor. not used nor updated.
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Adaption - Fine-Tuning Strategy

Input signal Features Predicted
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D
Pre-trained Transformer Encoder xeR label
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(a) 1 2 3 4 5 6 > > i y
Layer
- - \ J u J
(a) Linear probing. —_———
(b) I_ RA _I_ Fr Frozen layers: Pruned layers:
O SSYAS | - pre-trained model is used as feature extractor. not used nor updated. -
Input signal Features Predicted
n D
JB8IK Pre-trained Transformer Encoder S i
4 ) [ )
M .
(b) 1 | 23| a|ls5|6 | 7|89 ]1w]1|1ls Linear | ISSSS
Layer
\. J o »y

" —— N ——

Fine-tuned layers: Frozen layers: used in forward
weights are updated with LoRA. pass, but weights aren’t updated.
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Adaption - Fine-Tuning Strategy

Input signal Features Predicted
s € R”

D
Pre-trained Transformer Encoder xeR label

3 scenarios:

ﬂ .
A 5 6 . . Linear
Layer

(a)
(a) Linear probing. ‘ , \ ,
(b) I_ORA —|— Freeze_ Frozen layers: Pruned layers:

~ pre-trained model is used as feature extractor. not used nor updated.

>

(c) LoRA + Drop. nout signal Feaures Predicted

. label
Pre-trained Transformer Encoder

4 A [ )
H Li
(b) 1 | 213|456 | 7|89 |w]|]u]|ipsdgd— ™  — 3
Layer
\ J . _J
Fine-tuned layers: Frozen layers: used in forward
weights are updated with LoRA. pass, but weights aren’t updated.
Input signal Features Predicted
s€R” Pre-trained Transformer Encoder x € R label
( A [ )
H Linear
1 2 4 > —> ¥
(c) 3 5 6 Layer y
\, J . v

Fine-tuned layers: Pruned layers:
weights are updated with LoRA. dropped.
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Adaption - Fine-Tuning Strategy

Input signal Features Predicted
3 . s € R” Pre-trained Transformer Encoder x € R” label
" ( ) a ™)
Scenarios: . T T T, AN A
Layer y
" " \ y \ J
(a) Linear probing. —_———
(b) I_ R A _I_ F Frozen layers: Pruned layers:
O rec€ze. | - pre-trained model is used as feature extractor. not used nor updated.

(c) LoRA + Drop. nout signal Feaures Predicted

. label
Pre-trained Transformer Encoder

4 A [ )
. H Linear .
AI ms: (b) 1 2 3 4 5 6 7 8 9 10 | 11 | 12 > > Layer —> ¥
\ J . _J
- Does LoRA improve
Fine-tuned layers: Frozen layers: used in forward
over ||nea r prob| ng? weights are updated with LoRA. pass, but weights aren’t updated.
Input signal Features Predicted
s€R” Pre-trained Transformer Encoder x € R label
( A [ )
H Linear A
(c) 1 2 3 4 5 6 > Layer —> Yy
\, J . v
Fine-tuned layers: Pruned layers:
weights are updated with LoRA. dropped.
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Adaption - Fine-Tuning Strategy

3 scenarios:

(a) Linear probing.
(b) LoRA + Freeze.
(c) LoRA

Drop.
Aims:

- Does LoRA improve

over linear probing?

- Any difference between

freezing and dropping ?

Input signal
s € R”

Pre-trained Transformer Encoder

Features
x € RP

Linear
Layer

Predicted
label

>

J7;
(a) 1 2 3 4 5 6 >
Frozen layers: Pruned layers:
~ pre-trained model is used as feature extractor. not used nor updated. B
Input signal Features
n D
JE IR Pre-trained Transformer Encoder SBLE
H
(b) 1 2 3 4 5 6 I 8 9 10 11 12 >
Fine-tuned layers: Frozen layers: used in forward
weights are updated with LoRA. pass, but weights aren’t updated.
Input signal Features
n D
sER Pre-trained Transformer Encoder x€R
J7;
(c) 1 2 3 4 5 6 >

Fine-tuned layers:
weights are updated with LoRA.

Pruned layers:
dropped.

Linear
Layer

Predicted
label

>

Linear
Layer

Predicted
label

>
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e Linear probing: downwards trend through the

layers.

-@- (a) Linear Probing

D,, HUBERT

-@- (a) Linear Probing
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Layer-wise UAR [%] performance on IMV.
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improves performance across nearly all layers. T
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-@- (a) Linear Probing
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| | | | | |
- 94 m § @0 ©o "
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improves performance across nearly all layers. T

D,, HUBERT

(a) Linear Probing
(b) LoRA + Freeze
(c) LoRA + Drop

| | | | |
& o ¥ 9w Qo =
— — — — — —

Layer
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e Linear probing: downwards trend through the

layers.

-@- (a) Linear Probing

e LoRA fine-tuning: consistently and significantly @~ (b) LoRA + Freeze

-~ (c) LoRA + Drop

D,, HUBERT

improves performance across nearly all layers.

e AVES: LoRA models have a general upward
trend.

(a) Linear Probing
(b) LoRA + Freeze
(c) LoRA + Drop

| | | | |
& o ¥ @w Qo =
— — — — — —

Layer

Layer-wise UAR [%] performance on IMV.
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Adaption - Fine-Tuning Strategy

e Linear probing: downwards trend through the

layers.

-@- (a) Linear Probing

e LoRA fine-tuning: consistently and significantly @~ (b) LoRA + Freeze

-~ (c) LoRA + Drop

improves performance across nearly all layers. T

D,, HUBERT

e AVES: LoRA models have a general upward
trend.

e Later layers perform poorly without fine-tuning, (2) Linear Probing

(b) LOoRA + Freeze
(c) LoRA + Drop

but become informative with LoRA adaptation.

| | | | |
& o ¥ 9w Qo ©
— — — — — —

Layer

Layer-wise UAR [%] performance on IMV.
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Conclusions

e Speech SSLs carry meaningful information — distinguish animal vocalizations by call-

type, caller identity, and sex.
e Bioacoustics and general audio SSLs performance comparably to speech SSLs.

e Fine-tuning SSLs on the downstream data can lead to improved performances.

This thesis:

= Establishes that audio SSL models constitute a powerful, domain-agnostic toolkit.

= QOffers versatile starting point for decoding animal vocal communication.
= Provides practical framework: extendable to new species, recording conditions, and

behavioral contexts.
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FAQ - MLP Classifier

e Model: 4-layer MLP

Block Layers # Hidden Units Activation
1 Linear, LayerNorm 128 ReLU
2 Linear, LayerNorm 64 ReLLU
3 Linear, LayerNorm 32 ReLLU
4 Linear # classes

e Tlraining: 30 epochs, Adam optimizer, n-scheduler factor 0.1, patience 10 epochs.
o Grid search: values of batch-size [32, 64 ..., 512] and # across [1e-3, 1le-4].
e Protocol: 70:20:10 split of Train:Val: Test sets.

e Metrics: Unweighted Average Recall (UAR) to account for class imbalance.
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FAQ - AudioSet

Human sounds

Human voice

Whistling

Animal

Domestic animals, pets

Livestock, farm
animals, working

Music

Musical instrument
Music genre

Musical concepts

Respiratory sounds animals

Audio event classes such as:

Human locomotion Wild animals Music role

Digestive Music mood
Sounds of things
Hands

e Environmental sounds.

Natural sounds

e Musical instruments. Heart sounds, Vehicle

Engine Wind

Domestic sounds, Thunderstorm
home sounds Water

: Bell :
Source-ambiguous Fire

sounds Alarm

Otoacoustic emission

e Human and animal vocalizations.

Human group actions

Channel, environment

Mechanisms and background

Generic impact sounds

Tools

Surface contact . i
i Acoustic environment
Explosion

Wood

Deformable shell Noise

Onomatopoela Sound reproduction
Glass

Liquid

Silence

Other sourceless
Miscellaneous sources

Specific impact sounds

AudioSet Dataset Ontology
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FAQ - PANN

PANN Architecture

® CNN]_4 Model self.spectrogram_extractor Spectrogram()

® Balanced Samp|ing Strategy dCrossS self.logmel_extractor - LogmelFilterBank()

AudioSet's classes.

spec_augmenter - SpecAugmentation()

e Embeddings from final FC layer*

o WOrkS on a |Og—me| base_ bn® = nn.BatchNorm2d(64)

conv_blockl ConvBlock(in channels=1, out channels=64)
conv_block2 ConvBlock(in channels=64, out channels=128)
PANN models parameters conv_block3 ConvBlock(in channels=128, out channels=256)

conv_block4 = ConvBlock(in_channels=256, out_channels=512)
BW [kHz] 4 8 16 conyblocke = ConvBlock{in_channelos1624, ouT. channels=2648)
Window Size 256 519 1024 fcl = nn.Linear(2048, 2048, bias-True)
Hopp Size 80 160 320
Mel Bins 04 64 64
Frin 50 510 50

Foax 4000 8000 16000
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FAQ - BYOL

Views Representations Projections Prediction
) ) ) )
t(-) > v o fe( )| vo F>90C) > 20 {q0(:) > qo(20) — online
single r > — _loss
input < ) minimization
f () v fe () ve 90> 2 ) target
—/ / ~—
Original BYOL Image Augmentation Encoding Projection Prediction . exponential
S o | moving
BYOL for Audio  (Pucl N taton - v average

Fig. 2. BYOL and BYOL-A system overview.

e Minimizes distance between two augmented views of the same audio sample.
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FAQ - BYOL

BYOL Architecture

. TABLE IV
o AUdIONTT2020 I\/Iodel ENCODER NETWORK ARCHITECTURE (2048-D)
. Layer-#  Layer prms. Output shape | Parameters
e BYOL-A architecture ——— eci 1 : =
] . BatchNorm2D-2 : : 128
e Embeddings from final FC layer* ReLU-3 | ; 0
MaxPool2D-4  2x2,stride=2 | | : 0
_ Conv2D-5 3x3@64 : : 36,928
e Works on a log-mel base. o Com2D5 | | 28
RelLU-7 : : 0
MaxPool2D-8  2x2,stride=2 | | : 0
BYOL models parameters Conv2D-9 3x3@64 | [ j 36,928
BatchNorm2D-10 : : 128
BW kHZ 8 RelLU-11 B, 64, 16, 24]
[ ] MaxPool2D-12  2x2,stride=2 [B, 64, 8, 12
‘ ‘ Reshape-13 [B, 12, 512]
Window Size 64 Linear-14 out=2048 | [B, 12, 2048] | 1,050,624
Hopp Size 10 ReLU-15 B, 12, 2048 0
. Dropout-16 0.3 B, 12, 2048 0
Mel Bins 64 ¥ » Linear-17  out=2048 | [B, 12, 2048] | 4,196,352
F . 60 RelLLU-18 B, 12, 2048] 0
mn max(-) ® mean(-)-19 [B, 2048] 0
Foo. 8000
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FAQ - Catch-22

e Subset of Highly Comparable Time-Series Analysis (HCTSA):
» 7700 features through signal processing methods (eg LPC, Wavlet transform).
»  Tested on: birdsongs, ecosystem monitoring, and marmoset caller identification.

»  Significant limitations: computational demands and feature redundancy.

o Catch-22: steamlined subset of HCTSA.

e High performance with minimal redundancy across many classification problems.
e Add first and second order statics to make it D = 24
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FAQ Transterability of SSLs

@® Autoreg. Recon. @® Contrastive
© Masked Recon. ® Masked Pred.
‘ 5 APC |
CID 1 (0.95) _ 7/ | ) 1 O Mockingjay i WavLM
CID 2 (0.77) VY4 Mod-CPC |
CID 3 (0.90) APC |
CID 4 (0.74) . / Data2Vec i
CID 5 (0.68) DistilHubert |
CID 6 (0.84) Hubert I Wav2Vec2
CID 7 (0.74) - Mockingjay i .
CID 8 (0.89) NPC ' Hubert
CID 9 (0.69) TERA |
CID 10 (0.76) ' VQ-APC |
Micro (0.82) Wav2Vec2 i
Macro (0.80) | WavLM i DatazVee
1.0 . . . . f | 0 10 20 30 40 50 60 70 80 90 100
Paremeters [M]
AUC-ROC curves per caller class (CID) Macro average ROC curves of all models Model size against performance, divided
for WavLM embeddings using RBF SVM on Test using RBF SVM over all folds. into 4 quadrants.
on one fold of Test. Shaded areas represent = 1 std over the
5-folds.
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FAQ Transferability of SSLs - MFCC Baseline

.  MFCC: 1o
»  Window size: 15 ms (240 samples)
>~ Window shift: 5 ms (80 samples)

0.8 -

—— Mod-CPC |
—  APC

- Data2Vec
- DistilHubert

0.6 -

TPR

«  Weaker performance compared to pre-trained
SSL models.

Hubert
Mockingjay
NPC
- TERA
VQ-APC
- \Wav2Vec2
- \WavLM

0.4 -

0.2 -

-+ MFCCs
-+ GFCCs

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0 -
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Marmoset Vocalization Task Metrics

51




Marmoset Vocalization Task Metrics

e Imbalanced class distribution |

Number of Vocalizations

O 1 2 3 4 5 6 7 8 9 10 11
Call-type

Dataset class distributions.
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Marmoset Vocalization Task Metrics

e Imbalanced class distribution |

o 1 2 3 4 5 o6 7

rr T 17 1T 1 |
O 1 2 3 4 5 6 7 8 9 10 11 12 8 9

Number of Vocalizations

: -II.-
o 1 2 3 4 5 o 7 8 9 10 11 o 1 3 4 5 o6 7

Call-type Caller

8

Dataset class distributions.
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Marmoset Vocalization Task Metrics

e Imbalanced class distribution |

Metric:

‘Illllllll

e Unweighted Average Recall (UAR). | 012 385 e

Number of Vocalizations

: I—II.-
O 1 2 3 4 5 o6 7 8 9 10 11 o 1 3 4

Call-type Caller

Dataset class distributions.
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Marmoset Vocalization Task Metrics

e Imbalanced class distribution |

Metric:

‘Illllllll

e Unweighted Average Recall (UAR). R R BN R

e Accounts for class imbalance by

treating each class equally.

Number of Vocalizations

: I—II.-
O 1 2 3 4 5 o6 7 8 9 10 11 o 1 3 4

Call-type Caller

Dataset class distributions.
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FAQ Adaptation - Matrix Selection

UAR score achieved for each of the five
different LoRA adapter matrix
configurations.

Monotonic progression: performance
increases as projection modules are
tuned.

Fine-tuning only the query and key
projections yields the lowest UAR, with
each successive addition leading to

higher scores.

FC1,FC2 Q,K Q,K,V Q,K,V,FCO Q,K,V,FCO,FC1,FC2
LoRA Matrix Permutation

Abzaliev dataset for CTID.

- Best UAR [%] for each LoRA adapter configuration on layers
1-12.

- Fine-tuning all matrices yields the best performance.
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FAQ Adaptation - Layer and Module Selection

SR o —O @ - a
e Fine-tuning the feature \‘/‘/‘>s_._./‘~./ \ @ ‘\._._g70—.\‘ o
\ /‘

_® a_0—0—0 00
" 0=0— AN Xo—®

extraction (FE) layers severely —o— £

degrades performance.

e Fine-tuning the feature

projection (FP) alone does not

improve performance.

e Bottoms-up & top-down layer —@- AVES  —@- Hubert
selection strategies yield similar
o
results. | / e
Za N SV 4

e Neither AVES nor HuBERT - 0-0-0

consistently outperforms the

FE,FP,1-2 -
FE,FP,1-3 -

other across all layer selections.

FE,FP,1-4 -
FE,FP,1-5 4
FE,FP,1-6 -
FE,FP,1-7 -
FE,FP,1-8 4
FE,FP,1-9

FE,FP,1-10 +

FE,FP,1-11 -
FE,FP,1-12 -

Layer selection strategy UAR [%] results.
(a) bottoms-up, (b) top-down, (c) FE + FP + bottoms-up, (d) FP 4+ bottoms-up. 53




FAQ Adaptation - MLP vs. Linear Layer

HUBERT

e Abzaliev: MLP outperforms

. o
single-layer models. =
o
_ <
o |IMV: single-layer models
outperform MLP. _
C
»  Cannot draw general >
] =
conclusions.
»  Increased capacity may help in

some cases, It may not be

universally beneficial.

(b) (c) (c)
Scenario Scenario
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Model Adaptation

Fine-tuning Fine-tuning

on human speech on bioacoustics

9 e

Can it provide an additional inductive Does fine-tuning on the downstream

bias, useful for bioacoustics tasks ? bioacoustic data yields better results ?

55




FAQ - Fine-Tuning on Human Speech
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FAQ - Fine-Tuning on Human Speech

e SSL representations: strong performance on bioacoustics tasks without FT ing.
» Indicating their extracted latents can capture acoustically rich information.

»  Capable of distinguishing animal calls and identities.

e FT'ing in supervised framework: forces model to learn novel, specialized patterns.

»  Phonetic distinctions and temporal structures = can lead to performance gains.

e As speech and animal calls both encode structured vocal and linguistic information
»  SSL models fine-tuned on ASR may provide an additional inductive bias,

enhancing the model's ability to recognize complex features in bioacoustics data.
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FAQ - Fine-Tuning on Human Speech

Fine-tuning yields mixed effects across both

models.

e FT'd models don't consistently outperform —A— W2V2-100h
=A== W2V2-960h

their base ones.

e FT'ing on more speech data can lead to a

decline in performance in later layers, e.g.
960h-W2V2.

>~  FT on ASR may push models to learn task-

specific features that don't generalize well

to bioacoustic tasks.

W2V2 (A) and WLM (M) against their FT'd versions, _




Comparative Analysis

Type F IMV

e Best scores from AVES and HuBERT. AVES 62.54
| HuBERT 64.35

» HuBERT's representations are robust PT Wavl,M £Q 08
for CTID tasks across different species. W2V?2 62.40

e Best scores are from the PT category. WavLM-100h  60.93

PT + FT' W2V2-100h 63.44
W2V2-960h 61.25

Fusion 02.48

>  Fine-tuning PT'd speech models on an

ASR does not consistently bring us any

advantage over PT'd alone.

, _ UAR scores [%] on the best feature layer, on Test.
g PT d representations may already be Best performance is bolded, second best is underlined.

‘'optimized’, and FT'ing might not

always vyield significant benefits.
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FAQ - Vector Quantization Pipeline

Codebook

€ = {c,, ¢, ¢, },c; € RP Nearest Euclidean neighbor:
’ ) 000G &g

Nearest Euclidean Neighbour: Q[mg)] = argmin waff) — ¢35
i€{1,2,...,V}

VQ Loss:  Lyq = [sglzy,’] — cxll5 + Bl — sglex]|l3
—_— Y e

Codebook Loss Commitment Loss

_ Latent space
Trained “u P

Pre-trained SSL Layer representations

Audio signal s

Discrete representations
Frames per layer

F 1(8) [T T[] Quantizer
. S EEEEEEE —— 20 L (@)
EEREEER x) € RN<P 1 ;
T Token Sequence t,
. . l
Vocalization % & RLXNXD where t, € {1,...,V}

Frozensk Applied per frame
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FAQ - Token Sequence Distance Analysis

e Levenshtein distance across token sequences:

Bosshard Wierucka Abzaliev

0.6 -

VQ

0.5 -

Mean Normalized
Levenshtein Distance

0.4

0.4
I I I - I I I
CNN1 2 CNN1 2

=@~ Intra-caller, Intra-calltype  =—@=— Intra-caller, Inter-calltype  =@— Inter-caller, Inter-calltype  =@-— Inter-caller, Intra-calltype

Bosshard Wierucka Abzaliev

0.752 4
0.750 - w

0.748 -

GVQ 0.746 -

0.744 -

Mean Normalized
Levenshtein Distance

I I I 0742— I I I I I I I I I I I
101112 CNNL 2 3 4 101112 CNNL 2
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=@- Intra-caller, Intra-calltype =@— Intra-caller, Inter-calltype =@— Inter-caller, Inter-calltype =@— Inter-caller, Intra-calltype
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FAQ - Token Sequence Classification

e kNN based sequence classification using Levenshtein distance as metric.

Bosshard Wierucka Abzaliev
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CTID ‘ “ 20+

10 A

CNN1l 2 3 456 7 8 9101112 CNN1l 2 3 456 7 8 9101112 CNN1l 2 3 456 7 8 9101112
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Bosshard Wierucka Abzaliev
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40 -
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CLID 20-

20
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CNN1l 2 3456 7 8 9101112 CNN1l 2 3456 7 8 9101112 CNN1l 2 3456 7 8 9101112 CNN1l 2 3456 7 8 9101112

: Layers
—&®— Linear - VQ - GVQ —=: Chance
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FAQ - Token Sequence Classification (Best Layers)

e Classification performance drop: linear layer vs token sequences (VQ, GVQ).

CTID CLID

70 - Bl Linear B VQ 1 GVQ

60 -
50 -

40 A

UAR [%]

30 -

20 -

10 -
-95%

Bosshard Wierucka Abzaliev IMV Bosshard Wierucka Abzaliev IMV

Best UAR results across layers for CTID and CLID.
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