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Introduction

e Bioacoustics a growing field in ML and a theme of Interspeech 2024.

e [lasks typically involve classification, detection, denoising of an animal call.

ML Classifer

Animal vocalization
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Introduction

e Recent trend has been to leverage SSL models pre-trained on human speech

(WavLM, HuBERT, wav2vec?2, etc.) for processing bioacoustics signals!-3:

~  PT models are able to classity call-types, individual identities, sex, even without

downstream fine-tuning.

1 Sarkar et al. Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech.

2 Sarkar et al. On Feature Representations for Marmoset Vocal Communication Analysis (2024). Idiap-Internal-RR.
3 Cauzinille et al. Investigating self-supervised speech models' ability to classify animal vocalizations: The case of gibbon's vocal signatures (2024). Proc. of Interspeech.

4 Abzaliev et al. Towards Dog Bark Decoding: Leveraging Human Speech Processing for Automated Bark Classification (2024). Proc. of LREC-COLING.




Introduction

Pre-training
SSL Pre-text
J\’\’\’\M  ——
, Model Task
Unlabeled corpus Training criterion

e Since SSLs only learn the intrinsic structure of unlabeled input through a masking
pre-text task, they are able to capture essential information independently of any

domain-specific knowledge, and thus can be transferred to other acoustic domains.

1 Sarkar et al. Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech.

2 Sarkar et al. On Feature Representations for Marmoset Vocal Communication Analysis (2024). ldiap-Internal-RR.
3 Cauzinille et al. Investigating self-supervised speech models' ability to classify animal vocalizations: The case of gibbon's vocal signatures (2024). Proc. of Interspeech.
3

4 Abzaliev et al. Towards Dog Bark Decoding: Leveraging Human Speech Processing for Automated Bark Classification (2024). Proc. of LREC-COLING.
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Marmoset Vocalizations
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Common marmosets (Callithrix jacchus) are of particular interest due to:

e Highly vocal nature rooted in a complex social system.




Marmoset Vocalizations

Group affiliation Call-type Caller ldentity Dialect
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Common marmosets ( Callithrix jacchus) are of particular interest due to:
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e Highly vocal nature rooted in a complex social system.

e Ability to encode a range of information.




Marmoset Vocalizations
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Common marmosets (Callithrix jacchus) are of particular interest due to:
e Highly vocal nature rooted in a complex social system.

e Ability to encode a range of information.

e Acoustically diverse call repertoire.




Marmoset Vocalizations
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Their remarkable vocal adaptability also allows them to modify their call’s:

e Duration o Complexity

e Intensity e I[iming




Marmoset Vocalizations
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Vocal characteristics align them closely with human speech properties:

e lurn-taking

e Care-giving to infants

e (Categorical perception of sounds




Marmoset Vocalizations

A well-suited surrogate model for

understanding the evolutionary origins of human vocal communication

among biologists and neuroscientists.
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Problem: Bandwidth

62 kHz Bandwidth
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Problem: Bandwidth

e Models typically pre-trained at 8 kHz bandwidth (16 kHz sampling rate).

e Mismatch with the biological vocalization range of animals.

62 kHz Bandwidth 8 kHz

0.300 0.600 0.000 0.300 0.600
Time Time

Bandwidth = Sampling Rate / 2




Problem: Bandwidth

e Examine models pre-trained across

varying bandwidths.

e Aim to evaluate their effectiveness

Pre-trained

in adequately representing marmoset Model

calls, and seek to clarify how model
bandwidth influences their

classification.

10




Problem: Bandwidth

Pre-training
bandwidth

e Examine models pre-trained across
Z
varying bandwidths.
e Aim to evaluate their effectiveness
. . Pre-trained
in adequately representing marmoset Model ———> 8 khz

calls, and seek to clarify how model

bandwidth influences their

classification. 16 kHz
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Problem: Pre-Training Domain

. . . General Audio
e [Ihe influence of the pre-training domain for accurately

capturing marmoset call characteristics remains unclear.

VS

e Examine representations produced by different pre-training

domains to identify the most suitable pre-training source

for cross-domain bioacoustic signal analysis.

VS

Hand-crafted
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Methodology



Dataset Recording
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Dataset Recording

e Used a dataset from a

previous paperi.

1 Zhang et al., Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks. (2018). The Journal of the Acoustical Society of America.
Sarkar et al., Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech. 13




Dataset Recording

e Used a dataset from a

previous paperi.

e Inside a 2-layer cage.

EREAER..

Yun et al. Modeling Parkinson's disease in the common marmoset (Callithrix jacchus): Overview of models, methods, and
animal care (2023). Laboratory Animal Research.

1 Zhang et al., Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks. (2018). The Journal of the Acoustical Society of America.
Sarkar et al., Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech.
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Dataset Recording

e Used a dataset from a

previous papert. s e
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e Inside a 2-layer cage. T el

e Recorded individually with a

fixed microphone © 44.1

kHz without external

Yun et al. Modeling Parkinson's disease in the common marmoset (Callithrix jacchus): Overview of models, methods, and

Interf‘e rence animal care (2023). Laboratory Animal Research.

1 Zhang et al., Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks. (2018). The Journal of the Acoustical Society of America.
Sarkar et al., Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech. 13




Dataset Recording

e Data manually annotated by an experienced researcher:

»  Vocalization segments: [Start, End, Call-type, CallerlD, Sex].

»  Removed any silence and noise segments.

Start End Start End Start End

Silence Noise
Segment Segment Segment
Call-type: Trill Call-type: Phee Call-type: Twitter
CallerlD: 1 CallerlD: 1 CallerlD: 1

Sex: M Sex: M Sex: M

14




Dataset

InfantMarmosetsVox dataset statistics

e 73k vocalization segments (7.7 hours).

Call-type Count Caller ID Count
0 Pee re-phee) 1283 0 15521
o 11 call-types & 10 caller classes. L Phee (pre-phee) 27976 | 3648
2 Twitter 36582 2 13827
3 Trill 1408 3 H838
4 Trillphee 728 4 5654
5 T'sik T'se 686 5 3922
6 Egg 1676 6 4389
7 Pheecry (cry) 23 7 2681
8 TriI'Twitter 293 8 6387
9 Pheetwitter 2064 9 6454
10  Peep 202 - -

Total 72921 Total 72921

15




-=-=Median

Dataset _ 127 ms | 381 ms -== Mean

e 73k vocalization segments (7.7 hours).

o 11 call-types & 10 caller classes.

e Predominantly short (127 ms median).

o [asks:

»  Call-type classification (CTID).
~  Caller classification (CLID).

-==Mean
-==Median

e Protocol: 70:20:10 split Train:Val: Test.
e Metrics: Unweighted Average Recall (UAR) Duration (s)

Log distribution of vocalization lengths for callers 1-10.

to account for class imbalance.
16




Models and Feature Representations

Num. of parameters P and feature dimension D of selected
models, pre-trained on AudioSet (AS) or LibriSpeech (LS).

F Corpus P D Type
Handcrafted (spectral) baseline —— 29 [1 ] ] 94 HO
Pre-trained on human speech —— WavLM [2 I.S 04.38M 1536 SSJ,
Pre-trained on general audio —> BYOL 3 AS 5.32M 2048 SSL
Pre-trained on general audio =™ PANN [4 AS 8.08M 2048 5L

I Lubba et al., Catch22: Canonical Time-Series Characteristics, (2019). Data Mining and Knowledge Discovery.

2S. C. et al.,, WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing, (2022) IEEE Journal of Selected Topics in Signal Processing.

3 Niizumi et al., Byol for audio: Self-supervised learning for general-purpose audio representation. (2021). IEEE International Joint Conference on Neural Networks (IJCNN).

4 Kong et al., PANN: Large-scale pretrained audio neural networks for audio pattern recognition. (2020). IEEE/ACM Transactions on Audio, Speech, and Language Processing.
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Feature Extraction
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Feature Extraction

Raw
Audio

Signal s

Marmoset vocalizations.
Variable length segment.

-
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Feature Extraction

Raw
Audio

Signal s

Marmoset vocalizations.
Variable length segment.

-

Pre-trained models.

.

O & O O

(Catch-22) BYOL
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Feature Extraction

Raw F (s)
Audio

Signal s

Variable-length.

Marmoset vocalizations.
Variable length segment.

-

Pre-trained models.
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O & O O

(Catch-22) BYOL
RNXD
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Feature Extraction

Raw F 1 (S)
Audio
Signal s
Marmoset vocalizations. . Variable-length. Concatenated statistics of
| Pre-trained models. _
Variable length segment. the embeddings X across NV.
Fixed-length.
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Call Similarity Analysis




Call Similarity Analysis

e Do variations in the bandwidth affect
the similarity distributions of the

intra-class embeddings 7

e Do we see any distinctions between
the models pre-trained on speech vs.

general audio 7

Feature functional f

Class |

Similarity ?

Class j

20




Call Similarity Analysis

| mmm cuD mEm CTID

e Distributions centered around a 7s-
median distance of 1 for all features. 25
~ Suggests a lack of clear correlation or £ s
similarity within the embeddings 25

generated - PANN 4 KhZ PANN 8 kHz PANN 16 kHz BYOL 8 kHZ C22 8 kHZ WavLM 8 kHZ
Feature

General distribution of pairwise cosine distances [0-2] on Test.

sim(f1, f2) = 0 — Identical.
sim(fl, f2) = 1 = Orthogonal.
sim(fl, f2) = 2 = Opposite.

21




Call Similarity Analysis

PANN, 4 kHz PANN, 8 kHz PANN, 16 kHz BYOL, 8 kHz C22,8 kHz WavLM, 8 kHz

e Can delineate distributions into l!'
distance matrices.
e Ideal scenario: intra-class

distances smaller than inter.

Pairwise mean cosine distances [0-2] matrices.
Diagonal: intra-class distances

Off-diagonal: inter-class distances.
Darker: higher similarity.

22




Call Similarity Analysis

e Models PT'd on general audio
(BYOL and PANN) yield more
distinct diagonals than those
PT'd on speech (WavLM).

e Marginal level of class-specific
correlation, but mostly features

seem to be highly orthogonal.

e No clear linear separability.

Challenging to classity ?

PANN, 4 kHz PANN, 8 kHz PANN, 16 kHz BYOL, 8 kHz

B
N

Pairwise mean cosine distances [0-2] matrices.

Diagonal: intra-class distances
Off-diagonal: inter-class distances.
Darker: higher similarity.

C22 8 kHZ

WavLM 8 kHz

23




Classification Analysis



Classification

Raw F (s)
Audio
Signal s

Marmoset vocalizations . Variable-length. Concatenated statistics of
| Pre-trained models. |
Variable length segment. the embeddings X across N.
Fixed-length.

‘

O & O O
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Classification

Raw

Audio Functionals (Non-linear)

f Classifier

Signal s

Marmoset vocalizations. . Variable-length. Concatenated statistics of
| Pre-trained models. |
Variable length segment. the embeddings X across N.
Fixed-length.
O @ O O
-
“’\n (1, 6) Scores

R2D
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Classification Analysis

For WavLM: we classity each layer.

0
|_
O
a
-
O

e Lower layers are clearly much more
salient representations for both Layer-wise UAR scores of WavLM features, normalized [0,1] per task.

_ Darker regions indicate a higher performance.
tasks compared to higher layers.

e Higher layers: modeling

phonotactic information 7
e We use the best individual WavLM

layers for our two tasks.

26




Classification Analysis

(a) Results of features @ 8 kHz BW.

e BYOL outperforms the others,
for both CTID and CLID.

e Despite having fewer params
than WavLM & PANN.

e Hand-crafted C22 is the overall

weakest representation.

e WavLM shows highest difference

in performance across tasks.

Section F BW CTID CLID
Random - 9.09 10
C22 8 41.96 35.62
(a) WavLM 8 59.99  67.47
BYOL 8 63.64 68.30
PANN 8 58.54 56.02

UAR scores [%] on Test for pre-trained features F.

Random performance = 100 / # classes.
~or WavLM, the best layer's score is given.

27




Classification Analysis

(b) Impact of bandwidth during pre-

training.

Bandwidth size correlates directly

with the performance, increasing

monotonically.
PANN features at 16 kHz achieve

the highest performance across
all features and BWs for CTID.

The best scores for both tasks

are also closely matched in value.

Section F BW CTID CLID
Random - 9.09 10

C22 8 41.96 35.62

(a) WavLM 8 59.99  67.47
BYOL 8 63.64 68.30

PANN 8 5&.54 56.02

PANN 4 46.27 41.10

(b) PANN 8 5&.54 56.02
PANN 16 69.09 65.39

UAR scores [%]| on Test for pre-trained features F.
Random performance = 100 / # classes.

~or WavLM, the best layer's score is given.

28




Classification Analysis
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Normalized confusion matrices with row indices representing true class labels. Darker diagonals signify higher performance.
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Conclusion

e Investigated the utility of foundations models for marmoset call analysis.
»  Showed that a larger bandwidth directly correlates with improved performance.
»  Pre-training on general audio showed improved performance over speech.

e Underscore the potential of leveraging pre-trained foundation models for
bioacoustic signals, particularly when the model's bandwidth aligns with the

biological auditory and vocal range of the studied species.

31




Thank you !
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|diap Research Institute

https://github.com/idiap/speech-utility-bioacoustics

https://zenodo.org/records/10130104
(Includes PyTorch Dataset & Dataloader !)

eklavya.sarkar@idiap.ch
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FAQ - MLP Classifier

e Model: 3-layer MLP

Block Layers # Hidden Units Activation
1 Linear, LayerNorm 128 ReLU
2 Linear, LayerNorm 64 ReLLU
3 Linear, LayerNorm 32 ReLLU
4 Linear # classes

e Tlraining: 30 epochs, Adam optimizer, n-scheduler factor 0.1, patience 10 epochs.
o Grid search: values of batch-size [32, 64 ..., 512] and # across [1e-3, 1le-4].
e Protocol: 70:20:10 split of Train:Val: Test sets.

e Metrics: Unweighted Average Recall (UAR) to account for class imbalance.

33




FAQ - PANN

PANN Architecture

® CNN]_4 Model self.spectrogram_extractor Spectrogram()

® Balanced Samp|ing Strategy dCrossS self.logmel_extractor - LogmelFilterBank()

AudioSet's classes.

spec_augmenter - SpecAugmentation()

e Embeddings from final FC layer*

o WOrkS on a |Og—me| base_ bn® = nn.BatchNorm2d(64)

conv_blockl ConvBlock(in channels=1, out channels=64)
conv_block2 ConvBlock(in channels=64, out channels=128)
PANN models parameters conv_block3 ConvBlock(in channels=128, out channels=256)

conv_block4 = ConvBlock(in_channels=256, out_channels=512)
BW [kHz] 4 8 16 conyblocke = ConvBlock{in_channelos1624, ouT. channels=2648)
Window Size 256 519 1024 fcl = nn.Linear(2048, 2048, bias-True)
Hopp Size 80 160 320
Mel Bins 04 64 64
Frin 50 510 50

Foax 4000 8000 16000

34




FAQ - BYOL

BYOL Architecture

. TABLE IV
o AUdIONTT2020 I\/Iodel ENCODER NETWORK ARCHITECTURE (2048-D)
. Layer-#  Layer prms. Output shape | Parameters
e BYOL-A architecture ——— eci 1 : =
] . BatchNorm2D-2 : : 128
e Embeddings from final FC layer* ReLU-3 | ; 0
MaxPool2D-4  2x2,stride=2 | | : 0
_ Conv2D-5 3x3@64 : : 36,928
e Works on a log-mel base. o Com2D5 | | 28
RelLU-7 : : 0
MaxPool2D-8  2x2,stride=2 | | : 0
BYOL models parameters Conv2D-9 3x3@64 | [ j 36,928
BatchNorm2D-10 : : 128
BW kHZ 8 RelLU-11 B, 64, 16, 24]
[ ] MaxPool2D-12  2x2,stride=2 [B, 64, 8, 12
‘ ‘ Reshape-13 [B, 12, 512]
Window Size 64 Linear-14 out=2048 | [B, 12, 2048] | 1,050,624
Hopp Size 10 ReLU-15 B, 12, 2048 0
. Dropout-16 0.3 B, 12, 2048 0
Mel Bins 64 ¥ » Linear-17  out=2048 | [B, 12, 2048] | 4,196,352
F . 60 RelLLU-18 B, 12, 2048] 0
mn max(-) ® mean(-)-19 [B, 2048] 0
Foo. 8000
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FAQ - BYOL

Views Representations Projections Prediction
M) ) ) O
t() > v 2 fa()F> o {96 ) > 20 >{ae(-) > qo(z0) — online
single r > N loss
input o 3 minimization
(> v ()] ve gD z » target
—/ —/ —/
Original BYOL Image Augmentation Encoding Projection Prediction . exponential
: . o | moving
BYOL for Audio Sggg'gm NXL";?,',';,?};‘},’LS v average

Fig. 2. BYOL and BYOL-A system overview.
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FAQ - Catch-22

e Subset of Highly Comparable Time-Series Analysis (HCTSA):
» 7700 features through signal processing methods (eg LPC, Wavlet transform).
»  Tested on: birdsongs, ecosystem monitoring, and marmoset caller identification.

»  Significant limitations: computational demands and feature redundancy.

o Catch-22: steamlined subset of HCTSA.

e High performance with minimal redundancy across many classification problems.
e Add first and second order statics to make it D = 24

37




FAQ - WavLM

e Base model.
e Pre-trained on the 960h LibriSpeech.

e 13 encoder transformer layers.
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FAQ - AudioSet

Human sounds

Human voice

Whistling

Animal

Domestic animals, pets

Livestock, farm
animals, working

Music

Musical instrument
Music genre

Musical concepts

Respiratory sounds animals

Audio event classes such as:

Human locomotion Wild animals Music role

Digestive Music mood
Sounds of things
Hands

e Environmental sounds.

Natural sounds

e Musical instruments. Heart sounds, Vehicle

Engine Wind

Domestic sounds, Thunderstorm
home sounds Water

: Bell :
Source-ambiguous Fire

sounds Alarm

Otoacoustic emission

e Human and animal vocalizations.

Human group actions

Channel, environment

Mechanisms and background

Generic impact sounds

Tools

Surface contact . i
i Acoustic environment
Explosion

Wood

Deformable shell Noise

Onomatopoela Sound reproduction
Glass

Liquid

Silence

Other sourceless
Miscellaneous sources

Specific impact sounds

AudioSet Dataset Ontology
39




FAQ - Audio Classification

e Audio classification isn't synonymous to biological acoustic signals analysis like
speech, marmoset calls, which contain vocal and linguistic structures.

e Our work shows the utility of BYOL and PANN for Marmoset vocalization analysis
along with WLM.

40




