On the Utility of Speech and Audio Foundation Models for Marmoset Call Analysis

Eklavya Sarkar^{1,2}, Mathew Magimai Doss²

¹ Idiap Research Institute, Switzerland
 ² Ecole polytechnique fédérale de Lausanne, Switzerland

VIHAR 2024

ISCA Interspeech 2024 Satellite Event

September 2024

- Bioacoustics a growing field in ML and a theme of Interspeech 2024.
- Tasks typically involve classification, detection, denoising of an animal call.

- Recent trend has been to leverage SSL models pre-trained on human speech
 (WavLM, HuBERT, wav2vec2, etc.) for processing bioacoustics signals¹⁻³:
 - PT models are able to classify call-types, individual identities, sex, even without downstream fine-tuning.

¹ Sarkar et al. Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech.

² Sarkar et al. On Feature Representations for Marmoset Vocal Communication Analysis (2024). Idiap-Internal-RR.

³ Cauzinille et al. Investigating self-supervised speech models' ability to classify animal vocalizations: The case of gibbon's vocal signatures (2024). Proc. of Interspeech.

⁴ Abzaliev et al. Towards Dog Bark Decoding: Leveraging Human Speech Processing for Automated Bark Classification (2024). Proc. of LREC-COLING.

 Since SSLs only learn the intrinsic structure of unlabeled input through a masking pre-text task, they are able to capture essential information independently of any domain-specific knowledge, and thus can be transferred to other acoustic domains.

¹ Sarkar et al. Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech.

² Sarkar et al. On Feature Representations for Marmoset Vocal Communication Analysis (2024). Idiap-Internal-RR.

³ Cauzinille et al. Investigating self-supervised speech models' ability to classify animal vocalizations: The case of gibbon's vocal signatures (2024). Proc. of Interspeech.

⁴ Abzaliev et al. Towards Dog Bark Decoding: Leveraging Human Speech Processing for Automated Bark Classification (2024). Proc. of LREC-COLING.

Common marmosets (Callithrix jacchus) are of particular interest due to:

Highly vocal nature rooted in a complex social system.

Common marmosets (Callithrix jacchus) are of particular interest due to:

- Highly vocal nature rooted in a complex social system.
- Ability to encode a range of information.

Common marmosets (Callithrix jacchus) are of particular interest due to:

- Highly vocal nature rooted in a complex social system.
- Ability to encode a range of information.
- Acoustically diverse call repertoire.

Their remarkable vocal adaptability also allows them to modify their call's:

Duration

Complexity

- Intensity
- Timing

Vocal characteristics align them closely with human speech properties:

- Turn-taking
- Care-giving to infants
- Categorical perception of sounds

A well-suited surrogate model for understanding the evolutionary origins of human vocal communication among biologists and neuroscientists.

Bandwidth = Sampling Rate / 2

- Models typically pre-trained at 8 kHz bandwidth (16 kHz sampling rate).
- Mismatch with the biological vocalization range of animals.

- Examine models pre-trained across varying bandwidths.
- Aim to evaluate their effectiveness in adequately representing marmoset calls, and seek to clarify how model bandwidth influences their classification.

Pre-trained Model

- Examine models pre-trained across varying bandwidths.
- Aim to evaluate their effectiveness in adequately representing marmoset calls, and seek to clarify how model bandwidth influences their classification.

Problem: Pre-Training Domain

- The influence of the pre-training domain for accurately capturing marmoset call characteristics remains unclear.
- Examine representations produced by different pre-training domains to identify the most suitable pre-training source for cross-domain bioacoustic signal analysis.

General Audio

VS

Human Speech

VS

Hand-crafted

Methodology

Used a dataset from a previous paper¹.

¹ Zhang et al., Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks. (2018). The Journal of the Acoustical Society of America. Sarkar et al., Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech.

- Used a dataset from a previous paper¹.
- Inside a 2-layer cage.

Yun et al. Modeling Parkinson's disease in the common marmoset (Callithrix jacchus): Overview of models, methods, and animal care (2023). Laboratory Animal Research.

¹ Zhang et al., Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks. (2018). The Journal of the Acoustical Society of America. Sarkar et al., Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech.

- Used a dataset from a previous paper¹.
- Inside a 2-layer cage.
- Recorded individually with a fixed microphone @ 44.1 kHz without external interference.

Yun et al. Modeling Parkinson's disease in the common marmoset (Callithrix jacchus): Overview of models, methods, and animal care (2023). Laboratory Animal Research.

¹ Zhang et al., Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks. (2018). The Journal of the Acoustical Society of America. Sarkar et al., Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech.

- Data manually annotated by an experienced researcher:
 - Vocalization segments: [Start, End, Call-type, CallerID, Sex].
 - Removed any silence and noise segments.

Dataset

- 73k vocalization segments (7.7 hours).
- 11 call-types & 10 caller classes.

InfantMarmosetsVox dataset statistics

ID	Call-type	Count	Caller ID	Count
0	Peep (pre-phee)	1283	0	15521
1	Phee	27976	1	8648
2	Twitter	36582	2	13827
3	Trill	1408	3	5838
4	Trillphee	728	4	5654
5	Tsik Tse	686	5	3522
6	Egg	1676	6	4389
7	Pheecry (cry)	23	7	2681
8	TrllTwitter	293	8	6387
9	Pheetwitter	2064	9	6454
10	Peep	202	_	_
	Total	72921	Total	72921

Dataset

- 73k vocalization segments (7.7 hours).
- 11 call-types & 10 caller classes.
- Predominantly short (127 ms median).
- Tasks:
 - Call-type classification (CTID).
 - Caller classification (CLID).
- Protocol: 70:20:10 split Train: Val: Test.
- Metrics: Unweighted Average Recall (UAR) to account for class imbalance.

Log distribution of vocalization lengths for call-types.

Log distribution of vocalization lengths for callers 1-10.

Models and Feature Representations

Num. of parameters P and feature dimension D of selected models, pre-trained on AudioSet (AS) or LibriSpeech (LS).

	${\mathcal F}$	Corpus	$oldsymbol{P}$	$oldsymbol{D}$	\mathbf{Type}
Handcrafted (spectral) baseline ——	C22 [1]	-	_	24	HC
Pre-trained on human speech ——	WavLM [2]	LS	$94.38\mathrm{M}$	1536	SSL
Pre-trained on general audio		AS	5.32M	2048	SSL
Pre-trained on general audio	PANN [4]	AS	8.08M	2048	SL

¹ Lubba et al., Catch22: Canonical Time-Series Characteristics, (2019). Data Mining and Knowledge Discovery.

² S. C. et al., WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing, (2022) IEEE Journal of Selected Topics in Signal Processing.

³ Niizumi et al., Byol for audio: Self-supervised learning for general-purpose audio representation. (2021). IEEE International Joint Conference on Neural Networks (IJCNN).

⁴ Kong et al., PANN: Large-scale pretrained audio neural networks for audio pattern recognition. (2020). IEEE/ACM Transactions on Audio, Speech, and Language Processing.

Raw Audio Signal **s**

Marmoset vocalizations.

Variable length segment.

Call Similarity Analysis

Call Similarity Analysis

- Do variations in the bandwidth affect the similarity distributions of the intra-class embeddings?
- Do we see any distinctions between the models pre-trained on speech vs. general audio?

Feature functional f

Call Similarity Analysis

- Distributions centered around a median distance of 1 for all features.
- Suggests a lack of clear correlation or similarity within the embeddings generated.

General distribution of pairwise cosine distances [0-2] on *Test*.

$$sim(f1, f2) = 0 \rightarrow Identical.$$

$$sim(f1, f2) = 1 \rightarrow Orthogonal.$$

$$sim(f1, f2) = 2 \rightarrow Opposite.$$

Call Similarity Analysis

- Can delineate distributions into distance matrices.
- Ideal scenario: intra-class
 distances smaller than inter.

Pairwise mean cosine distances [0-2] matrices.

Diagonal: intra-class distances

Off-diagonal: inter-class distances.

Darker: higher similarity.

Call Similarity Analysis

- Models PT'd on general audio (BYOL and PANN) yield more distinct diagonals than those PT'd on speech (WavLM).
- Marginal level of class-specific correlation, but mostly features seem to be highly orthogonal.
- No clear linear separability.
 Challenging to classify?

Pairwise mean cosine distances [0-2] matrices.

Diagonal: intra-class distances

Off-diagonal: inter-class distances.

Darker: higher similarity.

Classification

Classification

For WavLM: we classify each layer.

- Lower layers are clearly much more salient representations for both tasks compared to higher layers.
- Higher layers: modeling phonotactic information ?
- We use the best individual WavLM layers for our two tasks.

Layer-wise UAR scores of WavLM features, normalized [0,1] per task. Darker regions indicate a higher performance.

- (a) Results of features @ 8 kHz BW.
- BYOL outperforms the others, for both CTID and CLID.
- Despite having fewer params than WavLM & PANN.
- Hand-crafted C22 is the overall weakest representation.
- WavLM shows highest difference in performance across tasks.

Section	\mathcal{F}	${f BW}$	CTID	CLID
	Random	_	9.09	10
	C22	8	41.96	35.62
(a)	WavLM	8	59.99	67.47
	BYOL	8	63.64	68.30
	PANN	8	58.54	56.02

UAR scores [%] on *Test* for pre-trained features F. Random performance = 100 / # classes. For WavLM, the best layer's score is given.

- (b) Impact of bandwidth during pretraining.
- Bandwidth size correlates directly with the performance, increasing monotonically.
- PANN features at 16 kHz achieve the highest performance across all features and BWs for CTID.
- The best scores for both tasks
 are also closely matched in value.

Section	\mathcal{F}	\mathbf{BW}	CTID	CLID
	Random	_	9.09	10
	C22	8	41.96	35.62
(a)	WavLM	8	59.99	67.47
	BYOL	8	63.64	68.30
	PANN	8	58.54	56.02
	PANN	4	46.27	41.10
(b)	PANN	8	58.54	56.02
	PANN	16	69.09	65.39

UAR scores [%] on *Test* for pre-trained features F.

Random performance = 100 / # classes.

For WavLM, the best layer's score is given.

Normalized confusion matrices with row indices representing true class labels. Darker diagonals signify higher performance.

Summary

Conclusion

- Investigated the utility of foundations models for marmoset call analysis.
 - Showed that a larger bandwidth directly correlates with improved performance.
 - Pre-training on general audio showed improved performance over speech.
- Underscore the potential of leveraging pre-trained foundation models for bioacoustic signals, particularly when the model's bandwidth aligns with the biological auditory and vocal range of the studied species.

Thank you!

Idiap Research Institute

https://github.com/idiap/speech-utility-bioacoustics

https://zenodo.org/records/10130104 (Includes PyTorch Dataset & Dataloader!)

eklavya.sarkar@idiap.ch

FAQ - MLP Classifier

Model: 3-layer MLP

Block	Layers	# Hidden Units	Activation
1	Linear, LayerNorm	128	ReLU
2	Linear, LayerNorm	64	ReLU
3	Linear, LayerNorm	32	ReLU
4	Linear	# classes	

- Training: 30 epochs, Adam optimizer, η -scheduler factor 0.1, patience 10 epochs.
- Grid search: values of batch-size [32, 64 ..., 512] and η across [1e-3, 1e-4].
- **Protocol**: 70:20:10 split of *Train:Val:Test* sets.
- Metrics: Unweighted Average Recall (UAR) to account for class imbalance.

FAQ - PANN

- CNN14 Model
- Balanced sampling strategy across AudioSet's classes.
- Embeddings from final FC layer*
- Works on a log-mel base.

PANN models parameters

${f BW}$ [kHz]	4	8	16
Window Size	256	512	1024
Hopp Size	80	160	320
Mel Bins	64	64	64
F_{min}	50	50	50
F_{max}	4000	8000	16000

PANN Architecture

```
# Spectrogram extractor
       self.spectrogram_extractor = Spectrogram()
       # Logmel feature extractor
       self.logmel_extractor = LogmelFilterBank()
       # Spec augmenter
       self.spec_augmenter = SpecAugmentation()
      # Model
       self.bn0 = nn.BatchNorm2d(64)
       self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
       self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
       self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
       self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
       self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
       self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)
* \longrightarrow self.fc1 = nn.Linear(2048, 2048, bias=True)
      # self.fc_audioset = nn.Linear(2048, classes_num, bias=True)
```

FAQ - BYOL

- AudioNTT2020 Model
- BYOL-A architecture
- Embeddings from final FC layer*
- Works on a log-mel base.

BYOL models parameters

${f BW}$ [kHz]	8
Window Size	64
Hopp Size	10
Mel Bins	64
F_{min}	60
F_{max}	8000

BYOL Architecture

TABLE IV				
ENCODER NETWORK ARCHITECTURE (2048-D)				
Layer-#	Layer prms.	Output shape	Parameters	
Conv2D-1	3x3@64	[B, 64, 64, 96]	640	
BatchNorm2D-2		[B, 64, 64, 96]	128	
ReLU-3		[B, 64, 64, 96]	0	
MaxPool2D-4	2x2, stride= 2	[B, 64, 32, 48]	0	
Conv2D-5	3x3@64	[B, 64, 32, 48]	36,928	
BatchNorm2D-6		[B, 64, 32, 48]	128	
ReLU-7		[B, 64, 32, 48]	0	
MaxPool2D-8	2x2,stride= 2	[B, 64, 16, 24]	0	
Conv2D-9	3x3@64	[B, 64, 16, 24]	36,928	
BatchNorm2D-10		[B, 64, 16, 24]	128	
ReLU-11		[B, 64, 16, 24]	0	
MaxPool2D-12	2x2,stride= 2	[B, 64, 8, 12]	0	
Reshape-13		[B, 12, 512]	0	
Linear-14	out=2048	[B, 12, 2048]	1,050,624	
ReLU-15		[B, 12, 2048]	0	
Dropout-16	0.3	[B, 12, 2048]	0	
* Linear-17	out=2048	[B, 12, 2048]	4,196,352	
ReLU-18		[B, 12, 2048]	0	
$\max(\cdot) \oplus \max(\cdot)$ -19 [B, 2048]				

FAQ - BYOL

FAQ - Catch-22

- Subset of Highly Comparable Time-Series Analysis (HCTSA):
 - > 7700 features through signal processing methods (eg LPC, Wavlet transform).
 - Tested on: birdsongs, ecosystem monitoring, and marmoset caller identification.
 - Significant limitations: computational demands and feature redundancy.
- Catch-22: steamlined subset of HCTSA.
- High performance with minimal redundancy across many classification problems.
- Add first and second order statics to make it D = 24.

FAQ - WavLM

- Base model.
- Pre-trained on the 960h LibriSpeech.
- 13 encoder transformer layers.

FAQ - AudioSet

Audio event classes such as:

- Environmental sounds.
- Musical instruments.
- Human and animal vocalizations.

AudioSet Dataset Ontology

FAQ - Audio Classification

- Audio classification isn't synonymous to biological acoustic signals analysis like speech, marmoset calls, which contain vocal and linguistic structures.
- Our work shows the utility of BYOL and PANN for Marmoset vocalization analysis along with WLM.