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Voice Activity Detection Problem

Task: identify segment boundaries in signals which contain voicing information.

● One of the first steps to be carried out in any speech technology. 

● Computational efficiency and robustness to noisy data are thus essential pre-
requisites for any SOTA VAD.
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● In recent years, it has been shown that voice source and vocal tract system 
information can be extracted using zero-frequency filtering without making any 
explicit model assumptions about the speech signal, as source-system decomposition 
does. 

● This paper investigates the potential of zero-frequency filtering for jointly modeling 
voice source and vocal tract system system information for VAD. 

● Towards that, we demonstrate that voice activity detection can be effectively achieved 
by combining the outputs of a bank of zero-frequency filters that carry information 
related to fundamental frequency ( ), first formant ( ) and second formant ( ). f0 F1 F2

6

Background



Background

7



Background

● Zero-frequency filtering (ZFF) was originally proposed in the context of extracting 
information related to voice source. 

7



Background

● Zero-frequency filtering (ZFF) was originally proposed in the context of extracting 
information related to voice source. 

● In this method, a speech signal is first passed through a cascade of digital resonators 
centered at 0 Hz, i.e. a zero-frequency filter. 

7



Background

● Zero-frequency filtering (ZFF) was originally proposed in the context of extracting 
information related to voice source. 

● In this method, a speech signal is first passed through a cascade of digital resonators 
centered at 0 Hz, i.e. a zero-frequency filter. 

● The resulting impulse response of these cascaded resonators, implemented as an 
integrator, is given by eq. (1) and the equivalent transfer function by eq. (2). 

7



Background

● Zero-frequency filtering (ZFF) was originally proposed in the context of extracting 
information related to voice source. 

● In this method, a speech signal is first passed through a cascade of digital resonators 
centered at 0 Hz, i.e. a zero-frequency filter. 

● The resulting impulse response of these cascaded resonators, implemented as an 
integrator, is given by eq. (1) and the equivalent transfer function by eq. (2). 

7



Background

● Zero-frequency filtering (ZFF) was originally proposed in the context of extracting 
information related to voice source. 

● In this method, a speech signal is first passed through a cascade of digital resonators 
centered at 0 Hz, i.e. a zero-frequency filter. 

● The resulting impulse response of these cascaded resonators, implemented as an 
integrator, is given by eq. (1) and the equivalent transfer function by eq. (2). 

7

x[n] = s[n] − 2x[n − 1] + x[n − 2] H[z] =
1

1 − 2z−1 + z−2



Background

● Zero-frequency filtering (ZFF) was originally proposed in the context of extracting 
information related to voice source. 

● In this method, a speech signal is first passed through a cascade of digital resonators 
centered at 0 Hz, i.e. a zero-frequency filter. 

● The resulting impulse response of these cascaded resonators, implemented as an 
integrator, is given by eq. (1) and the equivalent transfer function by eq. (2). 

● A trend removal (i.e. local mean subtraction) step is applied to the previous output 
to obtain GCI locations and strength of excitation information.

7

x[n] = s[n] − 2x[n − 1] + x[n − 2] H[z] =
1

1 − 2z−1 + z−2

y[n] = x[n] −
1

2N + 1

n+N

∑
k=n−N

x[k]; N + 1 ≤ n ≤ L − N
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computed over Train, modeled by 16 HMMs states, each represented by 3 Gaussian mixtures).
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Experimental Setup

Database:

● Aurora-2

● Sets: Train, Test A, Test B, Test C

● SNRs: clean, 20, 15, 10, 5, 0, -5

● Labels: obtained using a HTK recognizer (trained on 12 MFCC coefficients,  + log-energy, 
computed over Train, modeled by 16 HMMs states, each represented by 3 Gaussian mixtures).

Δ + ΔΔs

Metrics:

● F1-Score

Task:

● Binary classification task (speech vs. non-speech) at sample-level.
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R =
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;P =

TP
TP + FP
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VAD Baseline Methods

● rVAD ( ) 

● rVAD-Fast ( ) 

● GP-VAD ( )

VRVP
VRVS

VGP
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● LSD ( ) 

● TEO ( ) 

● LSE ( )

VLSD
VTEO

VLSE

● LTSD ( ) 

● Fusion ( ) 

● Wavlet ( )

VLTSD
VFUS
VDWT1,2



Results and Discussion
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Performance of methods on Aurora-2 across all SNRs and sets.

Method ‡F 1

VDW T 1.6
VLSD 1.7
VLT SD 2.0
VZF F 2.2
VLSE 2.8
VRV P 3.0
VZF F ≠ON≠RV P 3.2
VT EO 3.7
VRV S 4.3
VF US 4.5
VGP 5.7

Across all test sets
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Results and Discussion

●  remains invariant to added interferences across a range of SNRs. 

●  segments the signal into significantly tighter intervals than other baselines as well the ground truth.
VZFF

VZFF



Summary

● Investigated jointly modelling source and system information using ZFF for VAD. 

● Proposed and validated two approaches for VAD on the Aurora-2 dataset. 

● Investigations demonstrated that VAD can effectively by performed by: 

- Combining filter outputs together to compose a composite signal carrying , 
,  information, and then applying a dynamic threshold after spectral 

entropy-based weighting. 

- Passing the composite signal to another VAD.

f0
F1 F2
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● Proposed method produces more refined boundaries compared to other supervised 
and unsupervised baselines methods in the literature and is robust against 
degradation as well as channel characteristics. 

● First approach operates in time-domain and is relatively less complex to 
implement. 

● Second approach illustrates that the composite signal is an effective representation 
of speech characteristics, and hence can be used in conjunction with other VADs.
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Summary



Future Work

● Advantage of proposed method: it does not explicitly assume any mathematical 
model for the produced speech signal in order to acquire source and system 
information. 

● It can thus also be extended to other types of audio signals, such as animal and 
bird vocalizations. 

● We can also model the composite signal using the raw waveform neural network 
based modeling approach for supervised voice activity detection.

17



Thank you !
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