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Voice Activity Detection Problem

Task: identity segment boundaries in signals which contain voicing information.

e One of the first steps to be carried out in any speech technology.

e Computational efficiency and robustness to noisy data are thus essential pre-
requisites for any SOTA VAD.

Input: recording containing speech and non-speech. Output: speech segment boundaries.
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does.

e [his paper investigates the potential of zero-frequency filtering for jointly modeling

voice source and vocal tract system system information for

e [lowards that, we demonstrate that voice activity detection can be effectively achieved

by combining the outputs of a bank of zero-frequency filters that carry information

related to fundamental frequency (/,), first formant (/') and second formant (/).
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Background

o Zero-frequency filtering (ZFF) was originally proposed in the context of extracting
information related to voice source.

e In this method, a speech signal is first passed through a cascade of digital resonators
centered at 0 Hz, i.e. a zero-frequency filter.

e [he resulting impulse response of these cascaded resonators, implemented as an

integrator, is given by eq. (1) and the equivalent transfer function by eq. (2).

1
1 —2z71 4772

x[n] = s[n] — 2x|n — 1] + x|n — 2] H(z] =

e A trend removal (i.e. local mean subtraction) step is applied to the previous output

to obtain GCI locations and strength of excitation information.
n+N

1
= kl: N+1<n<L-N
y[n] = x[n] 2N+1k§_‘Nx[] n
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Database:

e Aurora-2
o Sets: Train, Test A, Test B, Test C

e SNRs: clean, 20, 15, 10, 5, 0, -5
e Labels: obtained using a HTK recognizer (trained on 12 MFCC coefficients, A + AAs + log-energy,

computed over Train, modeled by 16 HMMs states, each represented by 3 Gaussian mixtures).

Metrics:

e F1-Score P — P - R= L - F1 = .P'R
TP +FP TP +FN P+R

Task:

e Binary classification task (speech vs. non-speech) at sample-level.
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VAD Baseline Methods

e rVAD (Vryp) e LTSD (ViT5p)
o IVAD-Fast (VRVS) e [usion (VFUS)
e GP-VAD (Vip) o Wavlet (VDWT1,2)

o LSD (VLSD)
e IEO (VTEO)
o LSE (VLSE)
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Results and Discussion

Performance of methods on Aurora-2 across all SNRs and sets.
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Results and Discussion
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e V, . remains invariant to added interferences across a range of SNRs.

e V, - segments the signal into significantly tighter intervals than other baselines as well the ground truth.
14




Summary

e Investigated jointly modelling and information using for VAD.
e Proposed and validated two approaches for VAD on the Aurora-2 dataset.
e Investigations demonstrated that VAD can effectively by performed by:

- Combining filter outputs together to compose a composite signal carrying f,
F, F, information, and then applying a dynamic threshold after spectral

entropy-based weighting.
- Passing the composite signal to another VAD.

15




Summary

e Proposed method produces more refined boundaries compared to other supervised
and unsupervised baselines methods in the literature and is robust against

degradation as well as channel characteristics.
e First approach operates in time-domain and is relatively less complex to

implement.
e Second approach illustrates that the composite signal is an effective representation

of speech characteristics, and hence can be used in conjunction with other VADs.
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Future Work

e Advantage of proposed method: it does not explicitly assume any mathematical
model for the produced speech signal in order to acquire source and system
information.

e It can thus also be extended to other types of audio signals, such as animal and
bird vocalizations.

e We can also model the composite signal using the raw waveform neural network

based modeling approach for supervised voice activity detection.
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