Unsupervised Voice Activity Detection by Modeling Source and System Information using Zero Frequency Filtering Eklavya Sarkar^{1,2}, RaviShankar Prasad¹, Mathew Magimai Doss^{1,2} ¹Idiap Research Institute, Martigny, Switzerland ²École polytechnique fédérale de Lausanne, Switzerland #### Aims - This paper investigates the potential of zero-frequency filtering for jointly modeling voice source and vocal tract system information, and proposes two approaches for Voice Activity Detection (VAD): - 1. Demarcating voiced regions using a composite signal composed of different zero-frequency filtered signals. - 2. Feeding the composite signal as input to the rVAD algorithm. - These are compared with other supervised and unsupervised VAD methods in the literature, and evaluated on the Aurora-2 database across SNRs 20 to -5 dB. # **Zero Frequency Filtering** • ZFF transforms the signal into filtered ones which contain f_0 , F_1 , and F_2 evidences. $$x[n] = s[n] - 2x[n-1] + x[n-2]$$ $$y[n] = x[n] - \frac{1}{2N+1} \sum_{k=n-N}^{n+N} x[k]; \qquad N+1 \le n \le L-N.$$ (2) Figure 1. (a1) Speech signal. (a2) Filtered output. (a3-a4) ZFF signals $y_0(n)$, $y_1(n)$, $y_2(n)$. GCI locations (-). (b1) $S(\omega)$ (-) and its envelope (-). Formant peaks (•). Fundamental frequency peak (•). (b3-b4) $Y_0(\omega)$, $Y_1(\omega)$, $Y_2(\omega)$ (-), and respective peaks (•). ## **Proposed Method** Pipeline of proposed method to derive a decision boundary for VAD: # **Proposed Method** Principal components of the ZFF-VAD technique: Figure 2. a) Naturally corrupted speech signal s and final decision boundary. b) Accumulated ZFF signals r_c c) Inverse spectral entropy $1/e_h$ d) Decision surface y_{ds} and dynamic threshold θ_{ds} . # **Experimental Setup** #### Database, metrics, task: Aurora-2 F1-Score Binary classification rVAD (V_{RVP}) LTSD (V_{LTSD}) LSD (V_{LSD}) ## Results Classification performance of methods across all SNRs in different sets of Aurora-2: # **Analysis** Standard deviation of the F1-scores of each method, across all SNRs of entire Test set. | V_{DWT} | V_{LSD} | V_{LTSD} | V_{ZFF} | V_{LSE} | V_{RVP} | $V_{\sf ZFF\text{-}ON\text{-}RVP}$ | V_{TEO} | V_{RVS} | V_{FUS} | V_{GP} | |-----------|-----------|------------|-----------|-----------|-----------|------------------------------------|-----------|-----------|-----------|----------| | 1.6 | 1.7 | 2.0 | 2.2 | 2.8 | 3.0 | 3.2 | 3.7 | 4.3 | 4.5 | 5.7 | Decision boundaries of all methods for a noisy speech sample (SNR = 10 dB): - \triangleright V_{ZFF} remains invariant to added interferences across a range of SNRs. - $ightharpoonup V_{\rm ZFF}$ segments the signal into significantly granular intervals than the other methods, as well as those given in the ground truth. ## **Conclusions** - \triangleright VAD can be effectively performed with the proposed method i.e. by combining the ZFF filter outputs together to compose a composite signal carrying f_0 , F_1 , and F_2 related information, or else by passing the composite signal to another VAD. - The composite signal, obtained by modulation of trend removal in the zero-frequency filtering, is an effective representation of speech characteristics, and can be used in conjunction with other VADs. #### **Future Work** - Model the composite signal using a raw waveform CNN and a self-supervised learning based modeling approach for robust supervised voice activity detection. - The proposed framework could potentially be adapted to other types of audio signals, such as animal and birds vocalizations. # Acknowledgments ★ This work was funded by the Swiss National Science Foundation's NCCR Evolving language (grant agreement no. 51NF40_180888) and Towards Integrated processing of Physiological and Speech signals (TIPS) (grant agreement no. 200021_188754).