Eklavya Sarkar^{1,2}, Mathew Magimai Doss²

Idiap Research Institute, Switzerland ² Ecole polytechnique fédérale de Lausanne, Switzerland

IEEE ICASSP 2025

Comparing Self-Supervised Learning Models Pre-Trained on Human Speech and Animal Vocalizations for Bioacoustics Processing

April 2025

Introduction

- What: study of animal sounds and communication.
 - Plays a role in ecological and evolutionary research, providing insights into animal communication, biodiversity, and the origins of language.

- What: study of animal sounds and communication.
 - Plays a role in ecological and evolutionary research, providing insights into animal communication, biodiversity, and the origins of language.
- **Tasks**: call detection and classification, caller identification, and species recognition.

- What: study of animal sounds and communication.
 - Plays a role in ecological and evolutionary research, providing insights into animal communication, biodiversity, and the origins of language.
- **Tasks**: call detection and classification, caller identification, and species recognition.
- **Challenges**: scarce, noisy, difficult to collect and annotate.

- What: study of animal sounds and communication.
 - Plays a role in ecological and evolutionary research, providing insights into animal communication, biodiversity, and the origins of language.
- **Tasks**: call detection and classification, caller identification, and species recognition.
- **Challenges**: scarce, noisy, difficult to collect and annotate.
- **Progress**: In recent years advances in ML has addressed challenges. Notably ...

4

signals, significantly advancing the field.

Pre-trained foundation models shown impressive transferability to bioacoustics

- signals, significantly advancing the field.
- etc.) have shown remarkable success¹⁻⁵ in bioacoustics classification tasks.

¹ Sarkar et al. Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech. ² Sarkar et al., On the Utility of Speech and Audio Foundation Models for Marmoset Call Analysis (2024). Proc. of Interspeech. ³ Sarkar et al. On Feature Representations for Marmoset Vocal Communication Analysis (2025). Bioacoustics Journal. ⁴ Cauzinille et al. Investigating self-supervised speech models' ability to classify animal vocalizations: The case of gibbon's vocal signatures (2024). Proc. of Interspeech. ⁵ Abzaliev et al. Towards Dog Bark Decoding: Leveraging Human Speech Processing for Automated Bark Classification (2024). Proc. of LREC-COLING.

Pre-trained foundation models shown impressive transferability to bioacoustics

Notably, SSL models pre-trained on human speech (WavLM, HuBERT, wav2vec2,

4

solving pre-text tasks designed to learn salient representations.

¹ Sarkar et al. Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech. ² Sarkar et al., On the Utility of Speech and Audio Foundation Models for Marmoset Call Analysis (2024). Proc. of Interspeech. ³ Sarkar et al. On Feature Representations for Marmoset Vocal Communication Analysis (2025). Bioacoustics Journal. ⁴ Cauzinille et al. Investigating self-supervised speech models' ability to classify animal vocalizations: The case of gibbon's vocal signatures (2024). Proc. of Interspeech. ⁵ Abzaliev et al. Towards Dog Bark Decoding: Leveraging Human Speech Processing for Automated Bark Classification (2024). Proc. of LREC-COLING.

These models leverage large volumes of unlabeled data, prevalent in bioacoustics, by creating surrogate labels based on the intrinsic structure of the audio data, and then

domain fine-tuning.

¹ Sarkar et al. Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? (2023). Proc. of Interspeech. ² Sarkar et al., On the Utility of Speech and Audio Foundation Models for Marmoset Call Analysis (2024). Proc. of Interspeech. ³ Sarkar et al. On Feature Representations for Marmoset Vocal Communication Analysis (2025). Bioacoustics Journal. ⁴ Cauzinille et al. Investigating self-supervised speech models' ability to classify animal vocalizations: The case of gibbon's vocal signatures (2024). Proc. of Interspeech. ⁵ Abzaliev et al. Towards Dog Bark Decoding: Leveraging Human Speech Processing for Automated Bark Classification (2024). Proc. of LREC-COLING.

Given the domain-agnostic nature of the SSL pre-training tasks, SSL models have been effective in transferring from speech to bioacoustics, without even the need for

4

- domain fine-tuning.
- of downstream tasks.

Given the domain-agnostic nature of the SSL pre-training tasks, SSL models have been effective in transferring from speech to bioacoustics, without even the need for

• SSL essentially serve as powerful, general-purpose feature extractors for a wide range

SSL Pre-Training Domain

Research Question 1

Fine-Tuning on Human Speech

Research Question 2

recent works have explored directly PT'ing on bioacoustic data.

While SSL models pre-trained on speech have shown strong transferability to bio tasks,

- While SSL models pre-trained on speech have shown strong transferability to bio tasks, recent works have explored directly PT'ing on bioacoustic data.
- **Motivation** behind pre-training on animal data is that these models may better capture species-specific vocal patterns and other properties unique to animal sounds.

- While SSL models pre-trained on speech have shown strong transferability to bio tasks, recent works have explored directly PT'ing on bioacoustic data.
- Motivation behind pre-training on animal data is that these models may better capture species-specific vocal patterns and other properties unique to animal sounds.
- However, given that SSL PT'ing is designed to learn general, domain-agnostic features, it's not yet clear whether PT'ing directly on bioacoustics provides any significant benefit over SSLs PT'd on speech.

- While SSL models pre-trained on speech have shown strong transferability to bio tasks, recent works have explored directly PT'ing on bioacoustic data.
- **Motivation** behind pre-training on animal data is that these models may better capture species-specific vocal patterns and other properties unique to animal sounds.
- However, given that SSL PT'ing is designed to learn general, domain-agnostic features, it's not yet clear whether PT'ing directly on bioacoustics provides any significant benefit over SSLs PT'd on speech.
- **Therefore**, we systematically compare SSL models PT'd on human speech against those on animal calls, and evaluate their performance bioacoustic processing across a variety of datasets & tasks.

- SSL representations have shown strong performance on bio tasks without requiring FT'ing.
 - Indicating their extracted latents can capture acoustically rich information.
 - Capable of distinguishing animal calls & identities.

rmance on bio tasks without requiring FT'ing. e acoustically rich information.

- **SSL representations** have shown strong performance on bio tasks without requiring FT'ing. Indicating their extracted latents can capture acoustically rich information.

 - Capable of distinguishing animal calls & identities.
- **However**, FT'ing in a supervised framework often forces the model to learn novel & specialized patterns. Such as phonetic distinctions and temporal structures \rightarrow typically leading to performance gains.

- **SSL representations** have shown strong performance on bio tasks without requiring FT'ing. Indicating their extracted latents can capture acoustically rich information.
- - Capable of distinguishing animal calls & identities.
- However, FT'ing in a supervised framework often forces the model to learn novel & specialized patterns. Such as phonetic distinctions and temporal structures \rightarrow typically leading to performance gains.
- As human speech and animal calls both encode structured vocal and linguistic information for communication, SSL models fine-tuned on speech recognition (ASR) may provide an additional inductive bias, enhancing the model's ability to recognize complex features in bio data.

- **SSL representations** have shown strong performance on bio tasks without requiring FT'ing. Indicating their extracted latents can capture acoustically rich information.
- - Capable of distinguishing animal calls & identities.
- **However**, FT'ing in a supervised framework often forces the model to learn novel & specialized patterns. Such as phonetic distinctions and temporal structures \rightarrow typically leading to performance gains.
- As human speech and animal calls both encode structured vocal and linguistic information for communication, SSL models fine-tuned on speech recognition (ASR) may provide an additional **inductive bias**, enhancing the model's ability to recognize complex features in bio data.
- **Therefore**, we explore whether fine-tuning PT'd SSLs on human speech tasks, such as ASR, can improve models' capability to process animal calls by capturing the subtle spectro-temporal characteristics, which may otherwise remain under-represented in general SSL pre-training.

Contents

- I. Introduction
- II. Experimental Setup
- III. Experiments and Analysis
- IV. Conclusions

Experimental Setup

L denotes the total length [minutes], n_c the number of classes, SR the sampling rate [kHz], μ the median length [ms].

Dataset 7	# Samples	L	\mathbf{SR}	n_{c}	μ	σ
Watkins 💉	1,697	295		32	1701	71245
IMV 🕅	72,920	464	44.1	11	127	375
Abzaliev 🎸	8,034	137	48	14	655	1313

L denotes the total length [minutes], n_c the number of classes, SR the sampling rate [kHz], μ the median length [ms].

Dataset # S	Samples	L	\mathbf{SR}	n_{c}	μ	σ
Watkins	1,697	295		32	1701	71245
IMV 💘	72,920	464	44.1	11	127	375
Abzaliev 🌋	8,034	137	48	14	655	1313

L denotes the total length [minutes], n_c the number of classes, SR the sampling rate [kHz], μ the median length [ms].

Dataset	# Samples	L	\mathbf{SR}	n_{c}	μ	σ
Watkins 🚄	$\bigstar 1,697$	295		32	1701	71245
IMV 🕅	72,920	464	44.1	11	127	375
Abzaliev 🔏	8,034	137	48	14	655	1313

- Watkins:
- Marine mammals recordings.

L denotes the total length [minutes], n_c the number of classes, SR the sampling rate [kHz], μ the median length [ms].

Dataset 7	# Samples	\boldsymbol{L}	\mathbf{SR}	n_{c}	$oldsymbol{\mu}$	σ
Watkins	1,697	295		32	1701	71245
IMV 🕅	72,920	464	44.1	11	127	375
Abzaliev 🍂	8,034	137	48	14	655	1313

• Watkins:

- Marine mammals recordings.
- Multi-species vocalizations, rich acoustic variety, high variance in length.

Watkins Abzaliev Medians 1⁰²

L denotes the total length [minutes], n_c the number of classes, SR the sampling rate [kHz], μ the median length [ms].

Dataset # S	Samples	\boldsymbol{L}	\mathbf{SR}	n_{c}	$oldsymbol{\mu}$	
Watkins	1,697	295		32	1701	
IMV 🕅	72,920	464	44.1	11	127	
Abzaliev 🎸 🍾	8,034	137	48	14	655	

• Watkins:

- Marine mammals recordings.
- Multi-species vocalizations, rich acoustic variety, high variance in length.
 - InfantMarmosetsVox (IMV):

- σ 71245 375 1313

L denotes the total length [minutes], n_c the number of classes, SR the sampling rate [kHz], μ the median length [ms].

Dataset <i>‡</i>	# Samples	\boldsymbol{L}	\mathbf{SR}	n_{c}	$oldsymbol{\mu}$	σ
Watkins 💉	1,697	295		32	1701	71245
IMV 💦	72,920	464	44.1	11	127	375
Abzaliev 🎸	8,034	137	48	14	655	1313

• Watkins:

- Marine mammals recordings.
- Multi-species vocalizations, rich acoustic variety, high variance in length.
 - InfantMarmosetsVox (IMV):
 - Complex social system.

L denotes the total length [minutes], n_c the number of classes, SR the sampling rate [kHz], μ the median length [ms].

Dataset # S	Samples	\boldsymbol{L}	\mathbf{SR}	n_{c}	$oldsymbol{\mu}$	
Watkins	1,697	295		32	1701	
IMV 🕅	72,920	464	44.1	11	127	
Abzaliev 🎸 🍾	8,034	137	48	14	655	

• Watkins:

- Marine mammals recordings.
- Multi-species vocalizations, rich acoustic variety, high variance in length.
 - InfantMarmosetsVox (IMV):
- Complex social system.
- Encode critical information in calls.

	σ	
71	245	
	375	
1	313	

tkins ⁄	
zaliev dians	

 10^{2}

L denotes the total length [minutes], n_c the number of classes, SR the sampling rate [kHz], μ the median length [ms].

Dataset # S	Samples	\boldsymbol{L}	\mathbf{SR}	n_{c}	$oldsymbol{\mu}$	
Watkins	1,697	295		32	1701	
IMV 🕅	72,920	464	44.1	11	127	
Abzaliev 🎸 🍾	8,034	137	48	14	655	

• Watkins:

- Marine mammals recordings.
- Multi-species vocalizations, rich acoustic variety, high variance in length.
 - InfantMarmosetsVox (IMV):
- Complex social system.
- Encode critical information in calls.

• Abzaliev:

- σ 71245 375 1313
- Watkins Abzaliev Medians
 - 10²

L denotes the total length [minutes], n_c the number of classes, SR the sampling rate [kHz], μ the median length [ms].

Dataset # S	Samples	\boldsymbol{L}	\mathbf{SR}	n_{c}	$oldsymbol{\mu}$	
Watkins	1,697	295		32	1701	
IMV 🕅	72,920	464	44.1	11	127	
Abzaliev 🎸 🍾	8,034	137	48	14	655	

• Watkins:

- Marine mammals recordings.
- Multi-species vocalizations, rich acoustic variety, high variance in length.
 - InfantMarmosetsVox (IMV):
- Complex social system.
- Encode critical information in calls.

• Abzaliev:

- Novel dog dataset.

σ	
71245	
375	
1313	

/	
aliev	
dians	

10²

L denotes the total length [minutes], n_c the number of classes, SR the sampling rate [kHz], μ the median length [ms].

Dataset # S	Samples	$oldsymbol{L}$	\mathbf{SR}	n_{c}	${oldsymbol{\mu}}$	
Watkins	1,697	295		32	1701	
IMV 💦	72,920	464	44.1	11	127	
Abzaliev 🎸 🍾	8,034	137	48	14	655	

• Watkins:

- Marine mammals recordings.
- Multi-species vocalizations, rich acoustic variety, high variance in length.
 - InfantMarmosetsVox (IMV):
 - Complex social system.
 - Encode critical information in calls.

• Abzaliev:

- Novel dog dataset.
- Various types of barks.

Watkins Abzaliev Medians

1⁰²

¹All fine-tuned models are obtained from HuggingFace, namely from the facebook, microsoft, and patrickvonplaten repositories.

${\cal F}$	Corpus	P	\boldsymbol{D}	\mathbf{TL}	Type
AVES-Bio HuBERT	FSD, AS, Bio LS 960	$\begin{array}{c} 94.68\\ 94.68\end{array}$	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} \mathrm{PT} \\ \mathrm{PT} \end{array}$
W2V2 W2V2-100h W2V2-960h	LS 960 LS 960 LS 960	$95.04 \\ 95.04 \\ 95.04$	768 768 768	$12 \\ 12 \\ 12 \\ 12$	PT PT+F PT+F
WLM WLM-100h	LS 960 LS 960	94.38 94.38	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	PT PT+F

4 neural representations:

¹All fine-tuned models are obtained from HuggingFace, namely from the facebook, microsoft, and patrickvonplaten repositories.

${\cal F}$	Corpus	P	\boldsymbol{D}	\mathbf{TL}	Type
AVES-Bio HuBERT	FSD, AS, Bio LS 960	$\begin{array}{c} 94.68\\ 94.68\end{array}$	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} \mathrm{PT} \\ \mathrm{PT} \end{array}$
W2V2 W2V2-100h W2V2-960h	LS 960 LS 960 LS 960	$95.04 \\ 95.04 \\ 95.04$	768 768 768	$12 \\ 12 \\ 12 \\ 12$	PT PT+F PT+F
WLM WLM-100h	LS 960 LS 960	94.38 94.38	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	PT PT+F

4 neural representations:

• SSL PT'd on animal vocalizations.

${\cal F}$	Corpus	P	\boldsymbol{D}	\mathbf{TL}	Type
AVES-Bio HuBERT	FSD, AS, Bio LS 960	$\begin{array}{c} 94.68\\ 94.68\end{array}$	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} \mathrm{PT} \\ \mathrm{PT} \end{array}$
W2V2 W2V2-100h W2V2-960h	LS 960 LS 960 LS 960	$95.04 \\ 95.04 \\ 95.04$	768 768 768	$12 \\ 12 \\ 12$	PT PT+F PT+F
WLM WLM-100h	LS 960 LS 960	94.38 94.38	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	PT PT+F

4 neural representations:

- SSL PT'd on animal vocalizations.
- SSL PT'd on human speech.

${\cal F}$	Corpus	P	\boldsymbol{D}	\mathbf{TL}	Type
AVES-Bio HuBERT	FSD, AS, Bio LS 960	$\begin{array}{c} 94.68\\ 94.68\end{array}$	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} \mathrm{PT} \\ \mathrm{PT} \end{array}$
W2V2 W2V2-100h W2V2-960h	LS 960 LS 960 LS 960	$95.04 \\ 95.04 \\ 95.04$	768 768 768	$12 \\ 12 \\ 12$	PT PT+F PT+F
WLM WLM-100h	LS 960 LS 960	94.38 94.38	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	PT PT+F

4 neural representations:

- SSL PT'd on animal vocalizations.
- SSL PT'd on human speech.
- SSL PT+FT'd on human speech¹.

¹All fine-tuned models are obtained from HuggingFace, namely from the facebook, microsoft, and patrickvonplaten repositories.

${\cal F}$	Corpus	P	\boldsymbol{D}	\mathbf{TL}	Type
AVES-Bio HuBERT	FSD, AS, Bio LS 960	$\begin{array}{c} 94.68\\ 94.68\end{array}$	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} \mathrm{PT} \\ \mathrm{PT} \end{array}$
W2V2 W2V2-100h W2V2-960h	LS 960 LS 960 LS 960	$95.04 \\ 95.04 \\ 95.04$	768 768 768	$12 \\ 12 \\ 12$	PT PT+F PT+F
WLM WLM-100h	LS 960 LS 960	94.38 94.38	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	PT PT+F

4 neural representations:

- SSL PT'd on animal vocalizations.
- SSL PT'd on human speech.
- SSL PT+FT'd on human speech¹.
- Fusion.

${\cal F}$	Corpus	P	\boldsymbol{D}	\mathbf{TL}	Type
AVES-Bio HuBERT	FSD, AS, Bio LS 960	$\begin{array}{c} 94.68\\ 94.68\end{array}$	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} \mathrm{PT} \\ \mathrm{PT} \end{array}$
W2V2 W2V2-100h W2V2-960h	LS 960 LS 960 LS 960	$95.04 \\ 95.04 \\ 95.04$	768 768 768	$12 \\ 12 \\ 12 \\ 12$	PT PT+F PT+F
WLM WLM-100h	LS 960 LS 960	94.38 94.38	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	PT PT+F

4 neural representations:

- SSL PT'd on animal vocalizations.
- SSL PT'd on human speech.
- SSL PT+FT'd on human speech¹.
- Fusion.

Classifier:

${\cal F}$	Corpus	P	\boldsymbol{D}	\mathbf{TL}	Type
AVES-Bio HuBERT	FSD, AS, Bio LS 960	$\begin{array}{c} 94.68\\ 94.68\end{array}$	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} \mathrm{PT} \\ \mathrm{PT} \end{array}$
W2V2 W2V2-100h W2V2-960h	LS 960 LS 960 LS 960	$95.04 \\ 95.04 \\ 95.04$	768 768 768	$12 \\ 12 \\ 12 \\ 12$	PT PT+F PT+F
WLM WLM-100h	LS 960 LS 960	94.38 94.38	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	PT PT+F

4 neural representations:

- SSL PT'd on animal vocalizations.
- SSL PT'd on human speech.
- SSL PT+FT'd on human speech¹.
- Fusion.

Classifier:

• MLP: 3x [Linear, LN, ReLU] + Linear.

¹All fine-tuned models are obtained from HuggingFace, namely from the facebook, microsoft, and patrickvonplaten repositories.

${\cal F}$	Corpus	P	\boldsymbol{D}	\mathbf{TL}	Type
AVES-Bio HuBERT	FSD, AS, Bio LS 960	$\begin{array}{c} 94.68\\ 94.68\end{array}$	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} \mathrm{PT} \\ \mathrm{PT} \end{array}$
W2V2 W2V2-100h W2V2-960h	LS 960 LS 960 LS 960	$95.04 \\ 95.04 \\ 95.04$	768 768 768	$12 \\ 12 \\ 12 \\ 12$	PT PT+F PT+F
WLM WLM-100h	LS 960 LS 960	94.38 94.38	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	PT PT+F

4 neural representations:

- SSL PT'd on animal vocalizations.
- SSL PT'd on human speech.
- SSL PT+FT'd on human speech¹.
- Fusion.

Classifier:

- MLP: 3x [Linear, LN, ReLU] + Linear.
- Training: 30 epochs, cross-entropy.

¹All fine-tuned models are obtained from HuggingFace, namely from the facebook, microsoft, and patrickvonplaten repositories.

${\cal F}$	Corpus	P	\boldsymbol{D}	\mathbf{TL}	Type
AVES-Bio HuBERT	FSD, AS, Bio LS 960	$\begin{array}{c} 94.68\\ 94.68\end{array}$	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} \mathrm{PT} \\ \mathrm{PT} \end{array}$
W2V2 W2V2-100h W2V2-960h	LS 960 LS 960 LS 960	$95.04 \\ 95.04 \\ 95.04$	768 768 768	$12 \\ 12 \\ 12 \\ 12$	PT PT+F PT+F
WLM WLM-100h	LS 960 LS 960	94.38 94.38	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	PT PT+F

4 neural representations:

- SSL PT'd on animal vocalizations.
- SSL PT'd on human speech.
- SSL PT+FT'd on human speech¹.
- Fusion.

Classifier:

- MLP: 3x [Linear, LN, ReLU] + Linear.
- Training: 30 epochs, cross-entropy.
- Metric: Unweighted Average Recall.

¹All fine-tuned models are obtained from HuggingFace, namely from the facebook, microsoft, and patrickvonplaten repositories.

${\cal F}$	Corpus	P	\boldsymbol{D}	\mathbf{TL}	Type
AVES-Bio HuBERT	FSD, AS, Bio LS 960	$\begin{array}{c} 94.68\\ 94.68\end{array}$	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} \mathrm{PT} \\ \mathrm{PT} \end{array}$
W2V2 W2V2-100h W2V2-960h	LS 960 LS 960 LS 960	$95.04 \\ 95.04 \\ 95.04$	768 768 768	$12 \\ 12 \\ 12 \\ 12$	PT PT+F PT+F
WLM WLM-100h	LS 960 LS 960	94.38 94.38	768 768	$\begin{array}{c} 12 \\ 12 \end{array}$	PT PT+F

Raw Audio Signal s

Variable length vocalizations.

vųv

Experiments & Analysis

Layer-wise performance of AVES (•) against HuBERT (•).

Layer-wise performance of AVES (•) against HuBERT (•).

IMV: HuBERT > AVES in the initial and final layers. Both models show that initial layers are important - trend not limited to speech models.

Layer-wise performance of AVES (•) against HuBERT (•).

- Watkins: AVES's initial layers are not as salient as later ones, where as HuBERT's middle layers are conversely the least useful.

IMV: HuBERT > AVES in the initial and final layers. Both models show that initial layers are important - trend not limited to speech models.

Layer-wise performance of AVES (•) against HuBERT (•).

- Watkins: AVES's initial layers are not as salient as later ones, where as HuBERT's middle layers are conversely the least useful.

IMV: HuBERT > AVES in the initial and final layers. Both models show that initial layers are important - trend not limited to speech models.

• Abzaliev: AVES better overall. Initial and later layers contributing comparably. HuBERT doesn't scale well, follows downwards trend as IMV.

Layer-wise performance of AVES (•) against HuBERT (•).

- Watkins: AVES's initial layers are not as salient as later ones, where as HuBERT's middle layers are conversely the least useful.
- Abzaliev: AVES better overall. Initial and later layers contributing comparably. HuBERT doesn't scale well, follows downwards trend as IMV.
- **Overall**: Results indicate that pre-training on bioacoustic data can provide marginal improvements in some datasets/contexts.

IMV: HuBERT > AVES in the initial and final layers. Both models show that initial layers are important - trend not limited to speech models.

Fine-tuning yields mixed effects across both models and datasets.

Fine-tuning yields mixed effects across both models and datasets.

• FT models do not consistently outperform their base counterparts, particularly in W2V2-960h, with performance gains being marginal at best.

Fine-tuning yields mixed effects across both models and datasets.

- FT models do not consistently outperform their base counterparts, particularly in W2V2-960h, with performance gains being marginal at best.
- Notably, FT'ing on more speech data, such as the 960h-W2V2, sometimes leads to a decline in performance in later layers, as seen on IMV and Abzaliev.

Fine-tuning yields mixed effects across both models and datasets.

- FT models do not consistently outperform their base counterparts, particularly in W2V2-960h, with performance gains being marginal at best.
- Notably, FT'ing on more speech data, such as the 960h-W2V2, sometimes leads to a decline in performance in later layers, as seen on IMV and Abzaliev.
- Suggests FT'ing on speech may push models to learn taskspecific features that don't generalize as well to certain bioacoustic tasks.

Fine-tuning yields mixed effects across both models and datasets.

- FT models do not consistently outperform their base counterparts, particularly in W2V2-960h, with performance gains being marginal at best.
- Notably, FT'ing on more speech data, such as the 960h-W2V2, sometimes leads to a decline in performance in later layers, as seen on IMV and Abzaliev.
- Suggests FT'ing on speech may push models to learn taskspecific features that don't generalize as well to certain bioacoustic tasks.
- Interestingly, for non-FT models, earlier layers often capture enough general acoustic features to perform adequately.

Fine-tuning yields mixed effects across both models and datasets.

- FT models do not consistently outperform their base counterparts, particularly in W2V2-960h, with performance gains being marginal at best.
- Notably, FT'ing on more speech data, such as the 960h-W2V2, sometimes leads to a decline in performance in later layers, as seen on IMV and Abzaliev.
- Suggests FT'ing on speech may push models to learn taskspecific features that don't generalize as well to certain bioacoustic tasks.
- Interestingly, for non-FT models, earlier layers often capture enough general acoustic features to perform adequately.
- However, for fine-tuned models, layer selection becomes more important/necessary, as different layers may capture more specialized representations that could benefit specific certain tasks.

U B

Type	${\cal F}$	\mathbf{IMV}	Watkins	Abzalie
	AVES	62.54	94.95	54.2
	HuBERT	64.35	94.18	47.9
ΓΙ	WavLM	58.98	94.78	43.9
	W2V2	62.40	94.25	<u>48.</u>
	WavLM-100h	60.93	93.93	47.9
PT + FT	W2V2-100h	$\underline{63.44}$	91.77	44.9
	W2V2-960h	61.25	91.42	44.
	Fusion	62.48	94.78	48.9

UAR scores [%] on the best feature layer, on *Test*.

• Best scores from AVES and HuBERT.

Type	${\cal F}$	\mathbf{IMV}	Watkins	Abzalie
	AVES	62.54	94.95	54.2
ЪТ	HuBERT	64.35	94.18	47.9
ΓΙ	WavLM	58.98	94.78	43.9
	W2V2	62.40	94.25	<u>48.</u>
	WavLM-100h	60.93	93.93	47.9
PT + FT	W2V2-100h	$\underline{63.44}$	91.77	44.9
	W2V2-960h	61.25	91.42	44.
	Fusion	62.48	94.78	48.9

UAR scores [%] on the best feature layer, on *Test*.

- Best scores from AVES and HuBERT.
- Yield very comparable performances for both IMV and Watkins.

Type	${\cal F}$	\mathbf{IMV}	Watkins	Abzalie
PT	AVES	62.54	94.95	54.2
	HuBERT	64.35	94.18	47.9
	WavLM	58.98	94.78	43.9
	W2V2	62.40	94.25	<u>48.</u>
PT + FT	WavLM-100h	60.93	93.93	47.9
	W2V2-100h	$\underline{63.44}$	91.77	44.9
	W2V2-960h	61.25	91.42	44.3
	Fusion	62.48	94.78	48.9

UAR scores [%] on the best feature layer, on *Test*.

- Best scores from AVES and HuBERT.
- Yield very comparable performances for both IMV and Watkins.
- HuBERT's representations are robust for call classification tasks across different species.

Type	${\cal F}$	\mathbf{IMV}	Watkins	Abzalie
PT	AVES	62.54	94.95	54.2
	HuBERT	64.35	94.18	47.9
	WavLM	58.98	94.78	43.9
	W2V2	62.40	94.25	<u>48.</u>
PT + FT	WavLM-100h	60.93	93.93	47.9
	W2V2-100h	$\underline{63.44}$	91.77	44.9
	W2V2-960h	61.25	91.42	44.3
	Fusion	62.48	94.78	48.9

UAR scores [%] on the best feature layer, on *Test*.

- Best scores from AVES and HuBERT.
- Yield very comparable performances for both IMV and Watkins.
- HuBERT's representations are robust for call classification tasks across different species.
- All the best scores are from the PT category, as well as the second best scores.

Type	${\cal F}$	\mathbf{IMV}	Watkins	Abzalie
PT	AVES	62.54	94.95	54.2
	HuBERT	64.35	94.18	47.9
	WavLM	58.98	94.78	43.9
	W2V2	62.40	94.25	<u>48.</u>
PT + FT	WavLM-100h	60.93	93.93	47.9
	W2V2-100h	$\underline{63.44}$	91.77	44.9
	W2V2-960h	61.25	91.42	44.3
	Fusion	62.48	94.78	48.9

UAR scores [%] on the best feature layer, on *Test*.

- Best scores from AVES and HuBERT.
- Yield very comparable performances for both IMV and Watkins.
- HuBERT's representations are robust for call classification tasks across different species.
- All the best scores are from the PT category, as well as the second best scores.
- Fine-tuning PT'd speech models on an ASR does not consistently bring us any advantage over PT'd alone.

Type	${\cal F}$	\mathbf{IMV}	Watkins	Abzalie
PT	AVES	62.54	94.95	54.2
	HuBERT	64.35	94.18	47.9
	WavLM	58.98	94.78	43.9
	W2V2	62.40	94.25	<u>48.</u>
PT + FT	WavLM-100h	60.93	93.93	47.9
	W2V2-100h	$\underline{63.44}$	91.77	44.9
	W2V2-960h	61.25	91.42	44.3
	Fusion	62.48	94.78	48.9

UAR scores [%] on the best feature layer, on *Test*.

C. Comparative Analysis

- Best scores from AVES and HuBERT.
- Yield very comparable performances for both IMV and Watkins.
- HuBERT's representations are robust for call classification tasks across different species.
- All the best scores are from the PT category, as well as the second best scores.
- Fine-tuning PT'd speech models on an ASR does not consistently bring us any advantage over PT'd alone.
- PT'd representations may already be 'optimized', and FT'ing might not always yield significant benefits.

Type	${\cal F}$	\mathbf{IMV}	Watkins	Abzalie
PT	AVES	62.54	94.95	54.2
	HuBERT	64.35	94.18	47.9
	WavLM	58.98	94.78	43.9
	W2V2	62.40	94.25	<u>48.</u>
PT + FT	WavLM-100h	60.93	93.93	47.9
	W2V2-100h	$\underline{63.44}$	91.77	44.9
	W2V2-960h	61.25	91.42	44.3
	Fusion	62.48	94.78	48.9

UAR scores [%] on the best feature layer, on *Test*.

Best performance is **bolded**, second best is <u>underlined</u>.

C. Comparative Analysis

Confusion matrices of the best feature layers' fusion.

Good general classification alignment.

- **IMV**: False positives for call-type ID 2. High occurrence in dataset. Wide spectral range.
- Watkins: Easiest to classify. Clear acoustic/spectral differences. Class ID 13 only had 2 samples.

Abzaliev: Confusion between barks (IDs 0-5): overlapping acoustic features. ID 6 had few samples. ID 7 removed.

• **Summary**: Paper compared SSL models pre-trained on speech and animal calls for bioacoustic tasks.

- Summary: Paper compared SSL models pre-trained on speech and animal calls for bioacoustic tasks.
 - 1. Impact of pre-training domains: pre-training on bioacoustic data mostly yields comparable performance to pre-training on speech, but can offer limited advantages in select contexts.

- **Summary**: Paper compared SSL models pre-trained on speech and animal calls for bioacoustic tasks.
- 1. Impact of pre-training domains: pre-training on bioacoustic data mostly yields comparable performance to pre-training on speech, but can offer limited advantages in select contexts.
- 2. Impact of fine-tuning PT'd speech models on ASR for animal vocalizations: fine-tuning yielded inconsistent results, suggesting that the general-purpose representations learned during pre-training may already be well-suited for bioacoustic tasks.

- **Summary**: Paper compared SSL models pre-trained on speech and animal calls for bioacoustic tasks.
- 1. Impact of pre-training domains: pre-training on bioacoustic data mostly yields comparable performance to pre-training on speech, but can offer limited advantages in select contexts.
- 2. Impact of fine-tuning PT'd speech models on ASR for animal vocalizations: fine-tuning yielded inconsistent results, suggesting that the general-purpose representations learned during pre-training may already be well-suited for bioacoustic tasks.
- **Conclusion**: results highlight the utility of PT speech models for bioacoustic tasks, even without FT.

Source code

Thank you !

Idiap Research Institute

eklavya.sarkar@idiap.ch

Acknowledgments: NCCR Evolving Language, Dr. Humberto Pérez-Espinosa. Pic. credit: Michael B. Habib, 2020. Fossils Reveal When Animals Started Making Noise. Scientific American 326, 1, 42-47, Jan 22.

0

