Comparing Self-Supervised Learning Models
Pre-Trained on Human Speech and Animal Vocalizations
for Bioacoustics Processing

Eklavya Sarkar!.?, Mathew Magimai Doss’

l |diap Research Institute, Switzerland
> Ecole polytechnique fédérale de Lausanne, Switzerland

IEEE ICASSP 2025

April 2025

EPII:L @evolvinq .’;ICJ’IBD

lanQuage cesenrcn srore




Introduction



Computational Bioacoustics




Computational Bioacoustics Animal vocalizatior

e What: study of animal sounds and communication.

»  Plays a role in ecological and evolutionary research, providing

insights into animal communication, biodiversity, and the

origins of language.




Computational Bioacoustics Animal vocalizatior

e What: study of animal sounds and communication.

»  Plays a role in ecological and evolutionary research, providing
insights into animal communication, biodiversity, and the

origins of language.

e [Tlasks: call detection and classification, caller identification, and

species recognition.




Computational Bioacoustics Animal vocalizatior

e What: study of animal sounds and communication.

»  Plays a role in ecological and evolutionary research, providing
insights into animal communication, biodiversity, and the

origins of language.

e [Tlasks: call detection and classification, caller identification, and

species recognition.

e Challenges: scarce, noisy, difficult to collect and annotate.




Computational Bioacoustics

>

What: study of animal sounds and communication.

Plays a role in ecological and evolutionary research, providing
insights into animal communication, biodiversity, and the

origins of language.

Tasks: call detection and classification, caller identification, and

species recognition.

Challenges: scarce, noisy, difficult to collect and annotate.

Progress: In recent years advances in ML has addressed

challenges. Notably ...

Animal vocalization
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signals, significantly advancing the field.

e Notably, SSL models pre-trained on human speech (WavLM, HUBERT, wav2vec2,

etc.) have shown remarkable success!-> in bioacoustics classification tasks.
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e [hese models leverage large volumes of unlabeled data, prevalent in bioacoustics, by
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e Given the domain-agnostic nature of the SSL pre-training tasks, SSL models have

been effective in transferring from speech to bioacoustics, without even the need for

domain fine-tuning.
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Unlabeled corpus Training criterion

e Given the domain-agnostic nature of the SSL pre-training tasks, SSL models have

been effective in transferring from speech to bioacoustics, without even the need for

domain fine-tuning.

e SSL essentially serve as powerful, general-purpose feature extractors for a wide range

of downstream tasks.
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e While SSL models pre-trained on speech have shown strong transferability to bio tasks,

recent works have explored directly PT ing on bioacoustic data.

e Motivation behind pre-training on animal data is that these models may better capture

species-specific vocal patterns and other properties unique to animal sounds.

e However, given that SSL PT'ing is designed to learn general, domain-agnostic features,

it's not yet clear whether PT ing directly on bioacoustics provides any significant benefit
over SSLs PT'd on speech.

e [ herefore, we systematically compare SSL models PT'd on human speech against those

on animal calls, and evaluate their performance bioacoustic processing across a variety of

datasets & tasks.
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SSL representations have shown strong performance on bio tasks without requiring FT'ing.

Indicating their extracted latents can capture acoustically rich information.

Capable of distinguishing animal calls & identities.

However, FT'ing in a supervised framework often forces the model to learn novel & specialized patterns.

Such as phonetic distinctions and temporal structures — typically leading to performance gains.

As human speech and animal calls for

communication, SSL models fine-tuned on speech recognition (ASR) may provide an additional

inductive bias, enhancing the model’s ability to recognize complex features in bio data.

Therefore, we explore whether fine-tuning PT'd SSLs on human speech tasks, such as ASR, can im

models’ capability to process animal calls by capturing the subtle spectro-temporal characteristics, w

may otherwise remain under-represented in general SSL pre-training.
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WLM LS 960 94.38 768 12 PT
Classifier: WLM-100h LS 960 04.38 768 12 PT+FT

e MLP: 3x [Linear, LN, ReLU] + Linear.

1All fine-tuned models are obtained from HuggingFace, namely from the facebook, microsoft, and patrickvonplaten repositories.
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WLM LS 960 94.38 768 12 PT
Classifier: WLM-100h LS 960 04.38 768 12 PT+FT

e MLP: 3x [Linear, LN, ReLU] + Linear.

e Training: 30 epochs, cross-entropy.

1All fine-tuned models are obtained from HuggingFace, namely from the facebook, microsoft, and patrickvonplaten repositories.
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# Parameters P [M] and feature dimension D of selected models. LS

4 neural representations- represents LibriSpeech and AS is AudioSet.

e SSL PT'd on animal vocalizations. _~. Corpus P D TL ‘lype
| AVES-Bio  FSD, AS, Bio 94.68 768 12 PT
e S55L PT'don human speech. HuBERT LS 960 04.68 768 12 PT
® SSL PT-|—FT’d on human speechl. W2V?2 .S 960 0504 768 12 PT
o Fusion. W2V2-100h LS 960 95.04 768 12 PT+FT
W2V2-960h LS 960 05.04 768 12 PT+H+FT
WLM LS 960 94.38 768 12 PT
Classifier: WLM-100h LS 960 04.38 768 12 PT+FT

e MLP: 3x [Linear, LN, ReLU] + Linear.

e Training: 30 epochs, cross-entropy.

e Metric: Unweighted Average Recall.

1All fine-tuned models are obtained from HuggingFace, namely from the facebook, microsoft, and patrickvonplaten repositories. 11
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e IMV: HUBERT > AVES in the initial and final layers. Both models show that initial layers are important - trend not limited to speech models.
e Watkins: AVES's initial layers are not as salient as later ones, where as HUBERT 's middle layers are conversely the least useful.
e Abzaliev: AVES better overall. Initial and later layers contributing comparably. HUuBERT doesn't scale well, follows downwards trend as IMV.

e Overall: Results indicate that pre-training on bioacoustic data can provide marginal improvements in some datasets/contexts.
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e Interestingly, for non-FT models, earlier layers often capture

|
enough general acoustic features to perform adequately. 9 101112

e However, for fine-tuned models, layer selection becomes more _ _ | _

. . UAR of W2V2 (A) and WLM (M) against their FT'd versions.
important/necessary, as different layers may capture more
specialized representations that could benefit specific certain

tasks.
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C. Comparative Analysis

Type F IMV Watkins Abzaliev
AVES 62.54 94.95 54.23

PT HuBERT 64.35 94.18 4'7.96
WavLM 58.98 94.78 43.97

W2V2 62.40 94.25 48.95
WavLM-100h  60.93 93.93 4'7.90

PT + FT' W2V2-100h 63.44 91.77 44.91
W2V2-960h 61.25 91.42 44.36

Fusion 62.48 94.78 48.95

UAR scores [%] on the best feature layer, on Test.
Best performance is bolded, second best is underlined.

16




C. Comparative Analysis

e Best scores from AVES and HuBERT.

Type F IMV Watkins Abzaliev
AVES 62.54 94.95 54.23

PT HuBERT 64.35 94.18 4'7.96
WavLM 58.98 94.78 43.97

W2V2 62.40 94.25 48.95
WavLM-100h  60.93 93.93 4'7.90

PT + FT' W2V2-100h 63.44 91.77 44.91
W2V2-960h 61.25 91.42 44.36

Fusion 62.48 94.78 48.95

UAR scores [%] on the best feature layer, on Test.
Best performance is bolded, second best is underlined.

16




>

C. Comparative Analysis

Best scores from AVES and HuBERT.

Yield very comparable performances for both
IMV and Watkins.

Type F IMV Watkins Abzaliev
AVES 62.54 94.95 54.23

PT HuBERT 64.35 94.18 4'7.96
WavLM 58.98 94.78 43.97

W2V2 62.40 94.25 48.95
WavLM-100h  60.93 93.93 4'7.90

PT + FT' W2V2-100h 63.44 91.77 44.91
W2V2-960h 61.25 91.42 44.36

Fusion 62.48 94.78 48.95

UAR scores [%] on the best feature layer, on Test.
Best performance is bolded, second best is underlined.

16




C. Comparative Analysis

e Best scores from AVES and HuBERT.

> Yield very comparable performances for both
IMV and Watkins.

»  HuBERT's representations are robust for call

classification tasks across different species.

Type F IMV Watkins Abzaliev
AVES 62.54 94.95 54.23

PT HuBERT 64.35 94.18 4'7.96
WavLM 58.98 94.78 43.97

W2V2 62.40 94.25 48.95
WavLM-100h  60.93 93.93 4'7.90

PT + FT' W2V2-100h 63.44 91.77 44.91
W2V2-960h 61.25 91.42 44.36

Fusion 62.48 94.78 48.95

UAR scores [%] on the best feature layer, on Test.
Best performance is bolded, second best is underlined.




>

C. Comparative Analysis

Best scores from AVES and HuBERT.

Yield very comparable performances for both
IMV and Watkins.

HuBERT's representations are robust for call

classification tasks across different species.

All the best scores are from the PT

category, as well as the second best scores.

Type F IMV Watkins Abzaliev
AVES 62.54 94.95 54.23

PT HuBERT 64.35 94.18 4'7.96
WavLM 58.98 94.78 43.97

W2V2 62.40 94.25 48.95
WavLM-100h  60.93 93.93 4'7.90

PT + FT' W2V2-100h 63.44 91.77 44.91
W2V2-960h 61.25 91.42 44.36

Fusion 62.48 94.78 48.95

UAR scores [%] on the best feature layer, on Test.

Best performance is bolded, second best is underlined.

16




C. Comparative Analysis

Best scores from AVES and HuBERT.

Yield very comparable performances for both
IMV and Watkins.

HuBERT's representations are robust for call

classification tasks across different species.

All the best scores are from the PT

category, as well as the second best scores.

Fine-tuning PT'd speech models on an ASR
does not consistently bring us any advantage

over PT'd alone.

Type F IMV Watkins Abzaliev
AVES 62.54 94.95 54.23

PT HuBERT 64.35 94.18 4'7.96
WavLM 58.98 94.78 43.97

W2V2 62.40 94.25 48.95
WavLM-100h  60.93 93.93 4'7.90

PT + FT' W2V2-100h 63.44 91.77 44.91
W2V2-960h 61.25 91.42 44.36

Fusion 62.48 94.78 48.95

UAR scores [%] on the best feature layer, on Test.
Best performance is bolded, second best is underlined.

16




C. Comparative Analysis

Best scores from AVES and HuBERT.

Yield very comparable performances for both
IMV and Watkins.

HuBERT's representations are robust for call

classification tasks across different species.

All the best scores are from the PT

category, as well as the second best scores.

Fine-tuning PT'd speech models on an ASR
does not consistently bring us any advantage

over PT'd alone.

PT'd representations may already be
‘optimized’, and FT'ing might not always
vield significant benefits.

Type F IMV Watkins Abzaliev
AVES 62.54 94.95 54.23

PT HuBERT 64.35 94.18 4'7.96
WavLM 58.98 94.78 43.97

W2V2 62.40 94.25 48.95
WavLM-100h  60.93 93.93 4'7.90

PT + FT' W2V2-100h 63.44 91.77 44.91
W2V2-960h 61.25 91.42 44.36

Fusion 62.48 94.78 48.95

UAR scores [%] on the best feature layer, on Test.

Best performance is bolded, second best is underlined.

16




C. Comparative Analysis

Watkins Abzaliev

Predicted

Confusion matrices of the best feature layers’ fusion.

Good general classification alignment.

e |IMV: False positives for call-type ID 2. High occurrence in dataset. Wide spectral range.
e Watkins: Easiest to classify. Clear acoustic/spectral differences. Class ID 13 only had 2 samples.

e Abzaliev: Confusion between barks (IDs 0-5): overlapping acoustic features. ID 6 had few samples. ID 7 removed.
17
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2. Impact of fine-tuning PT'd speech models on ASR for animal vocalizations: fine-tuning
vielded inconsistent results, suggesting that the general-purpose representations learned

during pre-training may already be well-suited for bioacoustic tasks.

e Conclusion: results highlight the utility of PT speech models for bioacoustic tasks, even
without FT.
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