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Problem

Morphing Attack: When two individuals’ face images is combined into a single 
‘morphed’ image using a morphing algorithm.

● A threat to any biometric system where reference in an identity document can 
be altered.

● Presents an important issue in systems relying on identity documents.
‣ Automatic border control
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Motivation

● Work relating to morphing attacks tends to focus on their detection.

● Some related issues lack attention:

‣ No clear understanding on whether the latest FR systems are vulnerable to both 
‘classical’ and latest GAN-based morphing attacks.

‣ Very few public datasets of morphed images.

‣ Modern morphing techniques rarely publicly released.

‣ Lack of evaluation protocols.
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Contributions

This paper provides the following three contributions:

● Provide an open source morphing tool1 for generating morphing attacks.

● Providing new datasets with morphed images generated using different 
algorithms on two public face datasets.

● Conducting extensive experiments to assess the vulnerability of SOTA face 
recognition systems.

6
1https://gitlab.idiap.ch/bob/bob.paper.icassp2022_morph_generate
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Morph Generation - MIPGAN II

● Optimises the latent vector of the StyleGAN morph 

‣ To improve the perceptual fidelity, quality, identity factor of the StyleGAN morph.

● The weighted sum of 3 additional losses are used:

‣  Perceptual loss: maintains visual fidelity.ℒ1

‣  Identity loss: conserves identity of input images.ℒ2

‣  ID-Difference: equally balances between the input images.ℒ3

‣  MS-SSIM: improves structural visibility.ℒ4

ℒ = λ1ℒ1 + λ2ℒ2 + λ3ℒ3 + λ4ℒ4
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Evaluation and Metrics

Verification Process:

• Genuine User

• Zero-Effort Imposter

• Morph Attack Imposter

FRS: VGG, Morphing Tool: StyleGAN 2

Reference Probe Claimed ID

Verification Performance:

• Mated-Morph Presentation Match 
Rate — (MMPMR [%])
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Face Recognition Systems (FRS)

● Pre-trained Deep Neural Networks:


‣ FaceNet - 99.6%


‣ ArcFace - 99.5%


‣ VGG-Face - 98.5%

● Classical Baseline Models:


‣ Inter-Session Variability (ISV) - trained on MOBIO dataset
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Morph Generation - Datasets

● FERET

● FRLL

‣ Close-up frontal face images

‣ 1350 × 1350 resolution

‣ Uniform illumination

‣ Large varieties in ethnicity, pose, and expression
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Evaluation Scenarios - Morphing Attack

Morphs as references: Morphs as probes:
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Probe: Smiling BFReference: Neutral MA

FR system hijacked during enrollment process

Reference: Neutral BF Probe: Neutral MA

Similar to presentation attack scenario
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● StyleGAN 2 morphs do not pose a significant threat to SOTA FR recognition 

systems (compared to landmark-based morphs).

‣ Likely because of the original pixels of both images still present in the features 
after the landmark-based morphs pipeline is applied.

‣ Conversely, StyleGAN converses no pixel traces or identity features of the original 
subjects.

‣ The synthesised morphed image is instead is perceived as a new, different identity 
altogether.

‣ MIPGAN-II morphs which use extra losses to conserve identity are more threatening.
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Summary

● Generated different types of morphs, and conducted extensive face recognition 
vulnerability assessments.

● Results show that ‘classical’ morphs are still more of a threat than GAN-based 
ones, despite their higher visual quality.

➡ We publicly release:
- Open-source morphing tool.
- Generated morph datasets.
- Package for running vulnerability experiments.
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