

Tokenwise Contrastive Speech and Text pre-training for Emotion Recognition

Eklavya SARKAR and Neha TARIGOPULA

EE608 - Deep Learning for Natural Language Processing

Table of Contents

- 1. Speech Emotion Recognition
- 2. Motivation
- 3. Proposed Method
- 4. Experiment Design
- 5. Experimental Setup
- 6. Ongoing Work
- 7. Summary and Future Work

Speech Emotion Recognition (SER)

- Recognize human emotion and affective states from oral speech.
- Essential task in the human-computer interaction (HCI) field.
- Useful in applications such as call-center bots or intelligent cars.

Motivation

- Common approaches would typically use audio features.
 - However, these features focus only on paralinguistic acoustic/spectral information.
 - No information on semantic (language) knowledge from the spoken words.

Research Question:

 Can leveraging additional textual information improve representations for speech emotion recognition? (Untapped potential)

Proposed Method

Distill knowledge from BERT to audio embeddings via token-by-token alignment of speech and text

1. Use the speech representation of an utterance to convert a non-contextual word embedding (of the corresponding utterance's transcript) \rightarrow to contextual embedding tokens by using a cross-modal attention mechanism.

Proposed Method

- Use the speech representation of an utterance to convert a non-contextual word embedding (of the corresponding utterance's transcript) → to contextual word embeddings by using a cross-modal attention mechanism.
- 2. Use a contrastive loss to implicitly inject fine-grained semantic knowledge from a 'ground truth' (contextualized) text-encoder into the speech representations.
- Previous work¹ has shown results for speech2intent tasks
 - Hasn't been tested on SER systems.

Experiment Design - Pretraining

Experiment Design - Pretraining

Experiment Design - Downstream

Experiment Design - Baseline

Experiment Setup

Baseline (speech only):

- Whisper embeddings (last encoder layer) $\in \mathbb{R}^{N \times D}$.
- Compute and concatenate statistics (μ, σ) into functional vector $\in \mathbb{R}^{2D}$.

Proposed (speech x text):

Input features: Whisper x BERT contextualized embeddings.

Classifier:

- Simple feedforward network.
- 3 x [Linear, LayerNorm, ReLUs].

Metrics:

Accuracy and F1-score.

Protocols:

• 70:20:10 split into *Train*, *Val*, *Test*.

Experiment Setup

Downstream Datasets:

- EmoDB:
 - 7 classes.
- IEMOCAP:
 - 5 classes.
- 1 utterance = 1 emotion.
- Recorded by 10 actors (5 male, 5 female).
- Scripted and improvised.
- 16 kHz.

Utterances and labels per dataset.

Emotion	\mathbf{EmoDB}	IEMOCAP
Ang	127	1103
Hap	71	595
Neu	79	1708
Sad	62	1084
Dis	46	_
Fea	69	_
Bor	81	_
Exc	_	1041
Total	535	5531

Experiment Setup

Downstream Datasets:

- EmoDB:
 - 7 classes.
- IEMOCAP:
 - 5 classes.
- 1 utterance = 1 emotion.
- Recorded by 10 actors (5 male, 5 female).
- Scripted and improvised.
- 16 kHz.

Pre-training Dataset:

- Librispeech:
 - Train 100h
 - Train 500h
 - Train 960h
 - Read English (audiobooks).
 - ► 16 kHz.

Ongoing Work - Pretraining

Pre-training loss

Validation

Ongoing Work - Baselines

Accuracy and F1 scores [%] on *Test*.

Method	\mathbf{DB}	Acc	$\mathbf{F1}$
Baseline	EmoDB IEMOCAP	76.2	81.5
Proposed	EmoDB IEMOCAP		

Search space to find optimal hyper-parameters.

Classifier	Hyperparams	Search space
Baseline	Batch size Learning rate	$2^{**}[2, 10]$ $1e\{-3, -2\}$
Proposed	Batch size Learning rate Model	2**[2, 10] 1e{-3, -2} Base, Large

Summary and Future Work

Results will show whether this cross-alignment will help for SER.

Future Work:

- Try other encoders:
 - Text: word2vec, GloVe.
 - Audio: WavLM.

Thank you!