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Optimising Facial Information Extraction and Processing
using Convolutional Neural Networks

Facial recognition and related technologies have impacted society in funda-
mental and often unpredictable ways. This thesis aims to provide a critical
in-depth review of contemporary machine learning methods and an analysis
of facial recognition, gender classification, and emotion detection problems,
by implementing and evaluating models capable of solving these three tasks
on personally collected data.

We first conduct an extensive literature review of the current techniques
in use for solving such problems, define the scope and aims of this project,
before evaluating the key data collection and pre-processing methodologies.

We then build multiple neural networks classes capable of training differ-
ent types of models to solve all these tasks, and iteratively experiment with
different architectures and methodologies to analyse and identify the param-
eters that are most optimal for extracting and processing facial information.

We train, tune, and compare the various models for each task, using built-in
evaluative metrics. The subsequent results are analysed to determine the
most efficient and optimal models for each task.

We then synthesise all the trained and most promising models into a single
end-to-end prototype, capable of seamlessly executing all three tasks simul-
taneously. We then challenge the potential of this project by implementing
a final model capable of processing real-time input data from a live web-cam.

Finally, the results of the project are evaluated in relation to its originally
stated goals, and the strengths and weaknesses are discussed. A detailed
roadmap of options for future work and further optimisation is then pre-
sented, before concluding with the overall learning points.
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Chapter 1

Introduction

1.1 Background

Historically, the field of Artificial Intelligence (AI) has gone through several
cycles of initial excitement, intense hype, optimism, and promises of revolu-
tion - dubbed as AI summers; only to be followed by periods of disappoint-
ments, aptly named AI winters, in which expectations failed to materialise,
and government and research funds slowly moved on to other prospects
[Chauvet (2018)].

We currently seem to be in a new AI summer phase, with several influ-
ential breakthroughs following the emergence of Deep Learning, a sub-field
of the Machine Learning based on artificial neural networks. In the last
decade, this has slowly surpassed the performance of existing statistical
and classical Machine Learning techniques.

These new techniques improved, and became state-of-the-art, over the previ-
ous decade because of a few key factors, which were not necessarily related
to conventional theoretical, mathematical, or algorithmic advancements.
For example, the principle behind convolutional neural networks, a specific
type of neural network now regularly used for computer vision and pattern
recognition problems, was already well understood since 1989 [LeCun et al.
(1989)]. Indeed, the current success of deep learning techniques stems from
engineering and technological advancements, which loosened existing bot-
tlenecks and allowed for a new period of research and development, which
has led to many innovations we are currently witnessing.

A major breakthrough was improvement in hardware, which benefited both
from Moore’s law and the gaming industry. Companies such as NVIDIA
had been continuously investing in the development of increasingly fast and
‘parallelisable’ graphical computing chips, used for rendering complex 3D
scenes for personal computers. However, these developments happened to
be equally useful for deep learning, or any other computationally intensive
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tasks, which essentially consisted of matrix multiplications, since they are
also highly parallelisable [Oh and Jung (2004)].

Another advancement was the increased availability of data and large datasets,
which largely came from the growth of storage hardware capacities, as well
as, the meteoric rise of crowd-sourced data through the Internet, often col-
lected through modern media such as smartphones and social-media web-
sites such as YouTube, Wikipedia, and Google, to name a few.

Finally, once these two elements had significantly improved, there was
enough scope to experiment with new theoretical ideas, which led to meth-
ods which have now become the foundation of most deep learning tech-
niques, such as better activation functions and modern optimisers. These
advanced techniques, combined with networks of deeper layers, stronger
hardware capacities, and larger datasets finally resulted in concrete break-
throughs in the mid-2010s. Since then, the AI field has naturally continued
to evolve, and given rise to even more modern techniques, such as dropout
units, batch normalisation, and generative adversarial networks, which have
further contributed to the growth of AI [Minar and Naher (2018)].

Indeed, ever since large technology firms and industry leaders seriously in-
vested in AI research, there has been a rash of AI-based start-ups, and
inclusion of AI-based strategies in governmental planning through national
think-tanks. The exponential growth in this field has - and continues to
have - an impact on society through means of various products, such as au-
tonomous vehicles, hyper-realistic ageing apps, chat-bots capable of making
bookings, programs which can beat humans at any game, and videos of our-
selves saying something we never did [Benaich and Hogarth (2019)].

Notably, the field of computer vision and pattern recognition has seen re-
markable progress because of developments in deep learning, especially the
breakthrough of convolutional neural networks. Perhaps the most signif-
icant task in this field is human face recognition, which has a number of
potential applications, with deep social and political implications. Many
ethical and privacy related debates revolve around the implementation and
use of facial recognition technologies by large corporations or governments,
through the means of new products or biometrics [Woodhouse et al. (2019)].
Concerns have grown over the surveillance of citizens by the State, using
facial recognition technologies. Furthermore, in some countries, police have
started wide-scale implementation using facial recognition models to ap-
prehend suspects, a method which has been met with mixed results and
significant public outcry [Winston et al. (2019)]. In the 2019 Hong Kong
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demonstrations, many protesters made a point of spraying surveillance cam-
eras, bringing down facial recognition towers, and using umbrellas or masks
to conceal and protect their identities, to make a statement against such
State-sponsored automation [Mozur and Lin (2019)].

Some technologies have progressed further than relatively simple facial recog-
nition, and now attempt to detect the specific emotions present on a human
face. As these methods continue to become more sophisticated over time,
their impact will be continuously felt in our personal and professional lives.
Given the pace of these developments, it is imperative to further explore
deep learning research and its potential future applications. To this end,
we come up with a problem which explores these issues in order to provide
a study and in-depth analysis of facial recognition and related technologies,
explained in the next section.

1.2 Problem

In the modern era of smartphones, most users today have a large dataset
of images, many of which contain human faces. This project attempts to
specifically make use of this abundant personal data, and combine it with
modern deep learning techniques to demonstrate the power and potential
applications of such technologies. Specifically, the aim of this thesis will be
to solve the following main tasks: face detection, facial recognition, gender
classification, and emotion detection, each of which shall be first thoroughly
investigated in the form of a detailed literature review.

The proposed problem’s aims and objectives can be broken down into essen-
tial and desirable features, as given below. The final implemented models
should at least be able to:

• Detect a face in a given image.

• Crop the image down to the detected face.

• Recognise if a given face is either a specific individual or not.

• Classify the gender of a given face.

• Classify the expression of a given face according to whether it is happy
or not happy.

Ideally, the final product should also be able to:

• Detect multiple faces in a given image.

• Recognise and classify the individual for a given face, based on the
classes in the training set.
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• Have the ability to take in several images, and output albums of im-
ages sorted according to each individual.

• Classify the expression of a given face according to 6 designated cat-
egories: happy, sad, angry, disgusted, fearful, surprised.

• Construct a pipeline which is able to link together the tasks of all the
models and produce the ‘before’ and ‘after’ photographs.

The essential idea behind this conception of the project is to take advan-
tage of the improvements which have occurred over the last decade, namely
the widespread availability of high-performance computing hardware and
personal data, and combine it with emerging deep learning techniques, in
order to investigate and demonstrate how information from a human face
can be efficiently extracted and processed, to a high degree of accuracy.
It would also demonstrate how a cutting-edge AI product can today be
independently developed by an ordinary researcher, armed with just basic
theoretical knowledge and without the resources of a large corporation.

In the next chapter 2, we investigate and analyse the evolution of facial
recognition and related technologies through the means of an in-depth lit-
erature review.
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Chapter 2

Literature Review

2.1 Face Detection

2.1.1 Overview

Figure 2.1: Sample face detection on a given image.

Face detection is the first and foremost objective of our formulated project,
and is the foundational keystone for all facial tasks, including face clustering
and emotion classification. Face detection, in our case also equivalent to face

This chapter substantially draws from and builds upon an essay written and submit-
ted to Turnitin by self (Eklavya Sarkar) as an academic assignment in March 2019 for
Module ‘CM50175 Research Project Preparation’.
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localisation, is the process of detecting a face on a given visual medium, such
as a photograph, painting, or drawing. More specifically, it implies being
able to detect the regions of a picture in which a face is present, regardless
of its orientation, lighting conditions, or other issues.

In the case of videos, face detection could theoretically be done both in
post-recording or real-time. It would require not only localising the face at
a given instance of the video, but also continuing to track its location as it
moves through a sequence of frames. This process is called motion tracking,
and will not be covered in this project, as our goal and training data is
focused static images.

Over the years, the techniques used to solve this problem have evolved
to become more sophisticated in their approach, and have thus been able
to overcome some of the challenges. Section 2.1.2 of this chapter provides
an overview of the challenges in face detection which are common to all
approaches. Section 2.1.3 then gives a few ideas of applications based on
this process, before sections 2.1.4, 2.1.5, 2.1.6 explain the evolution of the
techniques. Finally, section 2.1.7 summarises and concludes the chapter by
giving future directions of this field.

2.1.2 Challenges

The task of face detection comes with a subset of its own unique problems.
Depending on the approach taken, some of the issues described below may
be circumvented, however, many of these are inevitable and common prob-
lems regardless of utilised technique.

The most obvious one would be the obstruction, or occlusion, of a face.
As the model can only view an image as a static 2D one, it has no way
of knowing if a face has been partially or entirely obscured by something
else, and thus cannot detect it. Another evident issue is a lack of resolution
in pictures: if the quality of an image is poor, then it could be harder to
summarise a group of pixels as a ‘face’.

The most important problem is perhaps the lighting conditions of a given
photograph. The brightness, intensity, and distribution of the light can
have huge effects on a model’s ability to correctly detect a face.

Another factor - one particularly challenging to solve - is the person’s pose
and orientation. A picture can have a person in a frontal or profile pose,
and the subject’s head can be orientated at a number of varying angles.
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The final set of problems relate directly to the person’s face itself. Some
models are unable to detect faces containing facial hair. Others only work
well on humans with light-coloured skin tones. The actual expression of the
photographed person can also be an issue - if it is particularly unusual, it
could distort the key facial features required by some methods.

Figure 2.2: A variety of known faces under different il-
luminations, angles, and ages. Taken from Saez-Trigueros,

Meng and Hartnett (2018).

2.1.3 Applications

2.1.4 Traditional Methods

The techniques used for face detection can classified in different categories
based on the chosen parameters. Yang, Kriegman and Ahuja (2002) sum-
marise them into four broad categories: knowledge-based, feature-based,
template-matching, and appearance-based approaches.
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Figure 2.3: Set of techniques for face detection.

Knowledge-based Techniques

The knowledge-based methods were the first approaches undertaken for this
task, as they are the easiest to define. They are, in essence, rules based on
our knowledge of human faces and their common characteristics. For ex-
ample, a human face must contain a nose, mouth, symmetric eyes within
a certain distance. This allows a model to detect and extract these facial
features, and then potentially classify the region in question as a face. The
enactment of the defined rule has a big impact on the faces detected. A
lenient set of rules would result in too many false positives, where as a strict
set would likely only detect frontal, well illuminated, unobscured faces in
uncluttered scenes.

An example such an implementation was done by, Yang and Huang (1994)
who developed a hierarchical system which used a set of three rules, one
for a new layer of abstraction. At the highest level, they simply scanned an
entire image using a window looking for potential faces based on a general
rule of what a face looks like. At the next level, they performed local his-
togram equalisation on the selected candidates, a processing method which
equalises the contrast of an image, and then edge detection, which simply
detects the edges. The rules at this level can thus relate to the lighting and
histogram distribution of the image, e.g. ‘the upper round part of a face has
a uniform intensity’. Finally, the remaining candidates go through a last
round of rules screening, relating directly to the facial features, such as their
mouth and nose. Although a model using this technique was able to detect
50 images which contained faces, out of a given test set of 60 pictures, 28
of them unfortunately were false positives.
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Feature-based Techniques

Some approaches had a different fundamental outlook - they focused instead
on the underlying assumption that there exists features or properties of
faces which are invariant, as humans can effortlessly detect them regardless
of the given poses and lighting conditions. These type of bottom-up meth-
ods start by detecting and extracting facial features, and then describing
their relationships by developing a statistical model, which also determines
the presence of a face. These type of models are often easy to implement,
however, they are naturally very dependent on the quality of the image,
and can be quickly crippled if the edges are too imperceptible or strong.

One of the significant papers in feature-based techniques, and face detec-
tion history in general, for a long time was by Viola and Jones (2001). It
proved to be a landmark paper, and a turning point due to it robustness
and extreme speed, and eventually became a foundational based technique,
upon which many more incremental methods were proposed. It provided
a machine learning approach for general object detection with very high
processing and detection speeds. This was due to 3 key elements: a new
image representation (named ‘integral image’), a learning algorithm based
on AdaBoost, and cascade-method which can combine increasingly complex
classifiers. It is especially this last part which provides the dramatic increase
in speed, approximately 15 times faster than any previous approach at the
time.

Even to date, many modern tools provide face detection based on the
groundbreaking work of Viola and Jones (2001). For example, OpenCV’s
current implementation of face detection is based on Haar’s algorithm, and
can even be implemented to work in real-time.

Template-matching Techniques

Another popular approach is template-matching, in which a standard face’s
pattern is manually defined or parametrised by a function. We can then
use a model to correlate a given face’s values to the standard one, and
determine the presence of a face according to them. While these models are
relatively easy to implement, they have trouble with different poses, shapes
and scales. As such, there are two types of templates which could alleviate
the problem.

Appearance-based Techniques

Unlike the template-matching techniques which rely on given predefined
templates, appearance-based methods learn them during training. It is
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these approaches which are currently having a breakthrough, and they are
very much based on principles of statistical analysis and machine learning.
Indeed, they are able to determine the key characteristics of faces in the
form of distribution models or discriminant functions, and then use them
to correctly identify faces themselves. These methods tend to be more com-
putationally extensive, which is why dimensionality reduction, a process of
reducing the number of random variables, is often executed on the training
dataset.

Many of the appearance-based models work on a probabilistic framework -
a given variable can be classified as belong to the ‘faces’ class or the ‘non-
faces’ class. If given a space of images, it will contain individual vectors
representing face or non-face images. The region occupied by faces vectors
is usually only a small subspace of the total image space. We can compute
the k-dimension subspace such that the projection of the data points onto
the subspace has the largest variance among all n-dim subspaces. This cap-
tures the essential appearance characteristics of faces.

Eigenfaces
Turk and Pentland (1991) pioneered a key algorithm in face detection based
on Principal Component Analysis (PCA), a dimension reduction technique
involving identifying the principal variables.

If we assume that most faces lie on low-dimension subspaces determined
by the first k directions of maximum variance, we can essentially use PCA
to determine the vectors that span that subspace. We can represent all the
given faces in the dataset as the linear combinations of eigenfaces, which
are the principal components.

As explained by Krishna (2018), the strongest advantage of this approach is
that it requires no explicit knowledge about the faces, or their expressions,
during training, as there is no attempt at preserving class distinctions. Fur-
thermore, it is also a non-iterative and globally optimal solution.

On the other hand, however, there are a few requirements for the test-
ing algorithm to adequately work. First of all, all the faces must be aligned
to the centre frame to avoid noisy results. Secondly, the images must all
be the same size. The algorithm is also susceptible to a certain degree to
the angle of the face, i.e. the pose. It is also important to note, since the
method is knowledge free, PCA doesn’t take into account the labels asso-
ciated with the faces, and thus it could map dissimilar faces in the same
regional subspace, making it tough for the classifiers to distinguish between
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them.

Figure 2.4: Faces (left) and eigenfaces (right). Taken
from Krishna (2018).

Fisherface
Fisherface technique is an enhancement on Eigenfaces, as it uses Fisher’s
Linear Discriminant Analysis (LDA) instead to PCA for dimensionality re-
duction. Since PCA doesn’t take the labels of classes into account, LDA was
proposed as an alternative which is optimal for classification, as opposed
to reconstruction. LDA tries find a projection which maximises the mean
distance between classes and minimises the scatter within a class, where as
PCA simply looks for the highest variance within a class. This allows for
an improved overall class discrimination.

In a survey by Belhumeur, Hespanha and Kriegman (1996), the results
by Eigenface and Fisherface were compared in depth on a dataset of 160
images of 10 distinct people, under 10 different lighting conditions or ex-
pressions. They arrived at the conclusion that the Fisherface approach
appears to be better at handling variation in lighting and expressions, and
has significantly lower error rates than Eigenface. The latter does improve
by a margin if the three largest components are removed, but does not yield
better results than Fisherface.

Support Vector Machines
Support Vector Machines (SVMs) are popular in machine learning for su-
pervised and classification problems, and can also be applied here for face
localisation problems. The are linear binary classifiers which attempt to
maximise the margin between the decision hyperplane, i.e. the classifica-
tion ‘line’, and the examples in the training set. As explained by Yang,
Kriegman and Ahuja (2002), the ‘best’ hyperplane is given as a weighted
combination of a subset of the training vectors, called support vectors, and
can be estimated by solving a bounded linear quadratic programming prob-
lem.
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This was first attempted by Osuna, Freund and Girosit (1997), who pre-
sented a novel and stable decomposition of this algorithm, and tested it on
large datasets. They were able to optimise their algorithm, and make it
computationally efficient enough to show that SVMs yielded results com-
parable to the then state-of-the-art models.

2.1.5 Turning Points

Neural networks, which have been applied to most pattern recognition prob-
lems by now, have successfully gotten good results for face detection. Sim-
ilar to knowledge-based techniques, neural networks can use a hierarchical
system to get an enhanced overall performance.

Such a system was first proposed by Agui et al. (1992), who used two layers.
The first consisted of two parallel sub-networks which filtered the intensity
values of a given image. The second one would then take the outputs of
the previous layer and the extracted feature values, such as the standard
deviation of the pixel values in the input pattern, as its own inputs. The
existence of a face in the input area would be revealed through the second
layer’s output. They observed through experimentation that this method
would produce good results if the test images contained faces of the same
dimensions.

Propp, Samal and Ashok (1992) worked on a similar project, but with
a higher number of layers and inputs. They had a total of four layers with
1024 input units, 256 for the first layer, 8 for the second, and finally 2 out-
put units.

Burel and Carel (1994) implemented a network which conducted dimen-
sionality reduction on the training set of boht faces and non faces, using an
algorithm developed by Kohonen (1989). They used a multi-layered per-
ceptron (MLP) to train through these examples for face classification, and
detected them by scanning all the images are different resolutions. They
also performed normalisation of the lighting conditions, and standardisation
of the image size, before using the MLP to classify the scanning window’s
content.

Some worked on auto-associative neural networks, with five layers, which is
able to compute a non-linear PCA. One of these can be employed to localise
frontal faces and another for detecting angled ones, as was done by Feraud
et al. (2001).
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Neural networks designed in a probabilistic manner as named probabilistic
decision-based neural network (PDBNN), and resemble radial basis func-
tion (RBF) networks. Lin, Kung and Lin (1997) proposed such a system
which extracted feature vectors solely on the basis of the intensity and edge
information of the central facial region (containing the mouth, nose, eyes
and eyebrows). The two selected feature vectors are individually input into
two different PDBNNs, whose output are merged together to determine the
classification of the system. Their results were comparable to other leading
neural facial detection networks.

A landmark paper using neural networks was presented by Rowley, Baluja
and Kanade (1996), who also used a multi-layered perceptron. Unlike some
of their contemporaries who tried to find an optimal discriminant function
to classify faces and non-faces using distance measures, Rowley, Baluja and
Kanade (1996) tried to map the relationship between these two entities’s
patterns using their image’s intensities and spatial relationship of pixels.
As explained by Yang, Kriegman and Ahuja (2002), there are two major
components used in their system, one is a multiple neural network, used to
detect face patterns, and the other a decision making module, used to ren-
der the final decision from numerous detection results. The model receives
a region of a given image as input, and outputs a value between -1 to 1,
indicating the certainty to a non-face or a face respectively. The network is
applied to all locations in the image. If a face happened to be bigger than
the size of the input region, it would go by undetected, which is why an
input image is repeatedly sub-sampled and the network is applied at each
scale.

However, this system could only detect upright and frontal faces, until they
published another paper with added methods to detect angled poses thanks
to a router network. This essentially processed the given input region to
determine the angle of a possible face, then rotated the regional window to a
canonical orientation, which is then once again presented to the neural net-
work. Although the detection rate of with the extended methodology was
lower than the original one, it still had very few false positives at 76.9%.

2.1.6 State of the Art

In more recent papers, however, deep learning approaches have been under-
taken to tackle this problem with fruitful results. Farfade, Saberian and Li
(2015) called this model ‘Deep Dense Face Detector’ (DDFD), which did
not require any pose or landmark annotation, as it was able to detect faces
in a wide range of orientations using a single model. This was fundamen-
tally due to the use of convolutional neural networks for feature extraction,
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and modern GPU computational power. Another key idea of this model
was to not use any additional methods such as segmentation, bounding-box
regression, or SVM classifiers, as it significantly increases the computing
complexity.

By analysing detection confidence scores, Farfade, Saberian and Li (2015)
observed a correlation between ‘the distribution of positive examples in the
training set and the confidence scores of the proposed detector’, suggesting
the results could still be improved by using better sampling strategies and
sophisticated data augmentation techniques.

Their method showed very positive results for rotated, occulted and multiple
faces. It was comparable to R-CNN or cascade-based other face detection
methods which are developed significantly for multi-face detection.

2.1.7 Conclusion and Future Directions

In this chapter, we reviewed the challenges and applications of face detec-
tion, before going through all the types of approaches used through the times
to solve this problem, such as feature-based, appearance-based, template-
matching, and so on. We observed the slow turning point that came with
implementation of neural networks, before delving into the current progress
made by deep learning.

Overall, face detection, while an interesting problem to solve in and of
itself, is still is more of a pathway to one of greatest and most interesting
problems in computer vision today, face recognition and facial emotion de-
tection, and those sub-fields that have a lot more variables than the binary
problem of classifying a region into a face or non-face.
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2.2 Emotion Classification

2.2.1 Overview

Figure 2.5: Sample facial expression classification.

Facial emotion, or expression, detection and classification is the final objec-
tive of our planned project - it is the process of determining the expression
represented on a given face on an image. From the point of view of analysing
a picture, it is arguably the final information which could gathered from
a human face, after detecting and classifying it. It is an interesting and
challenging task with a lot of value placed on it by the computer vision
community.

Expressions epitomise social and non-verbal communications between hu-
mans, and automatic recognition of such emotions represents a big gateway
to a number of novel applications and potential recommendation systems.
It would also represent a big step not only in making static images more
‘readable’, but adding a third dimension of feelings/emotions to a picture.
Expressions are the ‘visible and mutative manifestation of human cognitive
activity and pyschopthology’ (Ou, 2012).

Which is why, there has been active research and significant progress made
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in this sub-field. Methods now exist which are able to recognise a set of pre-
defined ‘basic’ expressions, which convey universal emotions, usually sum-
marised by happiness, sadness, fear, disgust, surprise and anger. However,
like the previous two tasks, progress is being made to detect these classes
under varying lighting conditions and poses. We first explain the numerous
challenges unique to this task in section 2.2.2, before going through the po-
tential applications of such a system in section 2.2.3. Section 2.2.4, 2.2.5,
2.2.6 again provide an overview of the evolution of the method used to solve
this problem over time, ranging from the classical techniques to the current
state-of-the-art approach. Finally, section 2.2.7 concludes by providing a
summary and outlining the future directions of this problem.

2.2.2 Challenges

Facial expression recognition’s (FER) main objective is to be able to au-
tomatically, reliably and efficaciously convey information about a person’s
expression. As these are only represented by the person’s facial features,
the most important factor, and biggest challenge, in this task is performing
a very high level of feature extraction. As explained by Ou (2012), if inad-
equate features are extracted from an input, even the best classifier would
fail to achieve accurate recognition. Therefore, the main difference between
models tends to be in how they extract facial features, and then how they
categorise them.

2.2.3 Applications

The applications for FER are numerous and can be applied to a lot of dif-
ferent context. As with face recognition, the most obvious example would
be in the context of security systems, which could use them, along with
other object detection, to tell if a person is in danger or not. For example,
automated surveillance systems could use security camera feed, and when
detecting both a knife and a person being fearful, can alert authorities.
Drones could also use such technologies in a number of ways.

Another big sector of applications lie in recommendation systems, such as
Spotify or Netflix. Currently, most of these rely on previously mined data
on a user’s habits, clicks, preferences and personal information to suggest
content, but they have no definite way of predicting or telling what a user
may be in the mood for in the present. A model which could take into ac-
count the person’s current feelings by reading their mood and output highly
accurate recommendations might be the closest we’d get to non-invasive sys-
tems until brain-computer interfaces. This could represent a new series of
‘smart’ devices capable of interacting with agents based on their mood.
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Furthermore, emotions could also be used to narrow down searches in pho-
tos, along with time and geo-location information, or simply sorting photos
according to basic emotions. Any algorithmic improvement for large tech-
nological firms can represent millions of additional revenue, and is thus a
very competitive field of research.

Facial emotion recognition could also be used in health sectors, where the
mental state of a patient is of importance. Automatic counselling systems
could also be looked into. The applications are only limited by one’s imag-
ination.

2.2.4 Traditional Methods

The overall pipeline for facial emotion recognition is similar across methods.
It involves a model taking in an image, computing some pre-processing re-
quired to detect faces, after which the facial features, such as eyes, mouth,
nose, etc., are extracted and used as inputs in the final classifier which deter-
mines the expression of the individual in question based on its classification
method. This is usually either a Support Vector Machine (SVM) or a Near-
est Neighbour (NN). Is it the feature extraction step which varies most from
method to method, and the following gives a quick overview of the most
popular approaches used, as explained by Kumari, Rajesh and Pooja (2015).

Local Binary Pattern (LBP) works by labelling each pixel in a region, de-
fined by a chosen radius, with a decimal value calculated by thresholding
each pixel value by their central value. Local Gradient Code, on the other
hand, tries to work out the relationship of neighbouring pixels. Local Di-
rection Pattern (Jabid, Hasanul Kabir and Chae, 2010) attempts to get an
improved performance despite variation in the lighting conditions, by using
masks which are convolved on regions to get mask values, which are in turn
ranked and assigned values. Finally, histogram of gradient orientations uses
the X and Y gradients of an image, which calculated using a gradient filter,
to calculate the corresponding magnitude and angle orientations. These
are then split up into ‘bins’, and the image itself is divided into ‘cells’. The
magnitude is repeatedly separated into bins corresponding to the angular
section to which it fell, and the obtained bin values are normalised to en-
hance the contrast.

The results presented by Kumari, Rajesh and Pooja (2015) showed that
Local Gradient Code performed the best out of these methods.

The classification algorithm itself, used right at the end of the overall
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pipeline, of a facial expression into one of the six universal aforementioned
emotions can go awry if given any type of minor or major deformations.
The facial landmark algorithms also have a few popular methods, namely,
holistic, local, and regression-based.

Figure 2.6: Facial landmarks defining the face shape,
and the corresponding sample images. Taken from Saez-

Trigueros, Meng and Hartnett (2018).

Holistic Methods

Holistic methods leverage and model the whole face and global facial shape
patterns. The original holistic model was a statistical one called the ‘Ac-
tive Appearance Model’ (AAM), developed by Cootes, Edwards and Taylor
(2001). It uses methods such as ‘Procrustes Analysis’, PCA, and image
wrapping. Most of the holistic methods since then have focused on improved
the ‘fitting algorithm’, using two different approaches, called analytic fitting
methods and learning-based fitting methods. The latter proved to be faster
but less accurate. Holistic methods can range from slow to fast in terms of
speed, and from poor to good in terms of performance (Wu and Ji, 2018).

Constrained Local Models

Constrained local models rely on the independent local facial appearance
information and global facial shape patterns to infer landmark locations.
The former is both easier to capture and more robust against illumination
and occlusion, especially when compared to holistic methods. CMLs can
be defined as both deterministic or probabilistic. The face shape model
looks at the various facial landmarks and maps the spatial relationships
between them, which constraint and refine the landmark location search.
These methods generally perform better than holistic ones.

Regression-based Methods

Regression based methods use holistic or local appearance information, po-
tentially embedded with with global facial shape patterns for joint landmark
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detection. These are completely different from holistic or constrained local
models, as they do not explicitly build any global face shape model, al-
though the face shape constraints may be implicitly embedded (Wu and Ji,
2018). These can be categorised into direct regression methods, cascaded
regression methods and deep-learning regression methods.

Direct regression models map the image to facial landmark locations in
a single step, which can further be classified into local or global approaches.
The former samples different areas of the face region, and builds regression
models to predict the displacement vectors, and then added to the local
current patch location to produce all landmark locations jointly. Combin-
ing the predictions from multiple samples patches gives the final landmark
locations (Wu and Ji, 2018).

Global approaches map global facial images to landmarks directly, as they
convey more information for landmark localisation. This technique however
has proven to be more difficult to learn, as the global facial appearance has
substantial variance and can be prone to obstruction.

2.2.5 Turning Points

Unlike direct regression models, which are able to predict locations in a sin-
gle step, cascaded regression methods start from an initial guess of the
facial landmark location, usually the mean face, before incrementally updat-
ing the locations across stages with various regression functions learnt from
different stages (Wu and Ji, 2018). Regressions models are used to learn the
relationship between shape indexed image appearances. The model learns
and updates the training data at every stage, before being sequentially ap-
plied to update the shapes across iterations during testing.

There have been attempts at modified versions of cascaded regression meth-
ods as well. Instead of having a structure in which the layers are dependent
on the former ones, a parallel learning method was developed by Asthana
et al. (2014). This resulted in faster training, as it allowed for incremental
updates to the model parameters at each level by adding a few more train-
ing samples.

Generally speaking, the cascade based regression methods have proven to be
more effective than the direct ones, as they follow a ‘coarse-to-fine’ method-
ology, going from focusing on large to fine variations with their regression
functions. However, there are a few issues with this approach, namely, the
lack of clarity on how to generate the initial landmark locations. While one
can use the mean face, it is does not work effectively for images with large
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head poses. Furthermore, cascaded methods apply only a fixed number of
predictions, and there is no concrete way of assessing the quality of the
landmark prediction or adapting it for testing images.

2.2.6 State of the Art

In recent times, there has been an overall shift towards using deep learning
tools for solving computer vision problems, and facial expression recognition
and landmark detection is no exception. Specifically, convolutional neural
networks (CNNs) have cemented themselves as the current leader preferred
choice of model, as most of them follow the global direct or cascaded regres-
sion methodology. However, the exact architecture of the CNN models vary
from paper to paper, and behave differently. Some state-of-the-art models
involve using an ensemble of CNNs to yield the highest performance, where
predictions are integrated via some form of averaging.

The majority of models using CNNs used the same pre-processing methods
described earlier, namely, involving face detection, illumination correction,
histogram equalisation, facial landmark extraction, and linear plane fitting.

The architectures of the CNN models usually involve different permuta-
tions of convolutional, pooling, response-normalisation, inception, and fully
connected layers. The choices also vary substantially in terms of the depth
and number of parameters. Most architectures have surprisingly been shal-
low in relation to those in related fields (Pramerdorfer and Kampel, 2016).
It is important to note that deeper networks do not necessarily have a
higher number of parameters. Furthermore, Khorrami, Paine and Huang
(2015) in fact demonstrated that a depth of five layers is sufficient enough
to discriminate between high-level features for FER.

Figure 2.7: Sample example of a deep CNN. Taken from
Wu and Ji (2018).

Some papers showed that having additional training dataset than just the
FER2013 improves performance as it reduces bias (Zhang et al., 2015), es-
pecially since the FER2013 is relatively small. Both data augmentation
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and ensemble voting have shown to improve generalised performance. Fur-
thermore, according to Pramerdorfer and Kampel (2016), the three highest
performing methods use face registration, revealing that this it beneficial
even under sub-optimal conditions. However, they were able to show that
an ensemble of shallow CNNs, can outperform the three best performing
methods without using face registration or data augmentation.

The current bottleneck for models in FER is in fact the lack of a large
labelled public training dataset. While face recognition for example has
dataset with hundred of thousands or millions of images, facial expression
datasets are much more limited, as each image has to be laboriously manu-
ally labelled. The FER2013 dataset, one of the largest ones available, only
contains around 35 thousand such images.

2.2.7 Conclusion and Future Directions

In this chapter, we reviewed the challenges and applications of facial emo-
tion recognition, and an overview of the approaches taken through history
to solve this problem. Specifically, we went in depth in reviewing the tra-
ditional facial landmark detection methods, such as holistic, constrained
local, and regression based techniques. We also delved into the current
deep learning techniques, and the pipelines and architecture of the neural
network models used in such models, and how these attempt to circumvent
the problems relating to illumination and occlusion. We saw that convo-
lutional neural networks have made significant progress in this field, but
that bottlenecks still exist due to a lack of training data, and a deeper and
more complex model isn’t necessarily currently giving higher results than a
shallow model.

Despite the progress made in recent times, these are still mostly trained,
applied and measured against prepared facial datasets. ‘In-the-wild’ emo-
tion recognition is still very challenging, although the problems are very
much the same as in the prepared datasets. A lack of a generalised solution
is likely contingent on the availability of a more thorough dataset, which
might see a breakthrough in the coming years through the development of
state-of-the-art Generative Adversarial Networks (GANs), which are com-
plex models capable creating ‘fake’ images of faces. Nonetheless, the journey
to attain real-time facial expression classification is still very long, and on a
large part dependent on the computational cost and optimisation of GPUs.
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2.3 Face Recognition

2.3.1 Overview

Figure 2.8: Sample face recognition on a given image.

Face recognition is the process of successfully identifying a given person’s
face without knowing their name. This can be both a supervised or unsu-
pervised task, as a model can cluster faces in groups according to similarity,
or else categorise each face according to their labels.

Is it a fundamentally different task to the ‘anonymous’ face detection, and
one with the capability of having a much deeper and ground breaking impact
on society, as we are currently in the midst of witnessing. It is, however,
very much similar to facial expression recognition problem, and has seen
practically the same evolution of approaches over time, based on geometric,
holistic, and feature-based methods for facial landmark detection. Thus,
to avoid redundancy and overlap, this chapter has been placed last, and
elements which are not fundamentally unique to face recognition problem
have been omitted here.
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2.3.2 Challenges

One challenge more so unique to face recognition, than detection or emotion
classification, is the process of ageing. Indeed, it is still unclear how a
model would perform on the recognition of individuals with sample images
separated by decades. As recognition is based on facial landmarks, which
can distort or change through the years, it is a challenging process to build
a model capable of understanding the natural process of ageing and taking
it into account.

2.3.3 Applications

Face recognition applications are essentially the same as face detection’s,
but with more personalised value. It is quickly turning into the preferred
biometric method due to its non-invasive process, and could soon be used
for most identity authenticate purposes, as we have seen in the latest smart-
phones such as the iPhone X or the OnePlus 5T. Other applications are not
limited to fraud detection, social media tagging, access control, etc.

2.3.4 Traditional Methods

The pipeline for face recognition is almost identical to facial emotion recog-
nition, except the final features are not compared against a set of six pre-
determined emotions, but simply against other training faces. These meth-
ods have generally relied on hand-crafted features, such as edges and texture
descriptors, leveraged with machine learning tools such as PCA or SVMs
Saez-Trigueros, Meng and Hartnett (2018).

A loss function such as the Euclidian or angular distance could be used
for training, and algorithms such as nearest neighbours, metric learning, or
threshold comparison could be used for classification during testing. These
have traditionally been tested on datasets comprised of famous celebrities’
images, as those are far easier to obtain and label, than ones comprised of
expressions.

2.3.5 State of the Art

Unsurprisingly, deep learning as impacted face recognition as well, but per-
haps more so than for the other two problems. Indeed, some face recognition
systems are believed to have in fact now surpassed human performance in
some scenarios (Phillips et al., 2018).

Unlike facial emotion problems, huge datasets exist containing ‘in-the-wild’
images of known people which can be efficiently used in deep learning to im-
prove accuracy of CNN models, and leave behind the traditional holistic or
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geometric methods. Taigman et al. (2014a) achieved an accuracy of 97.35%
using CNNs, improving on the previous state-of-the-art by an astounding
27%.

There are three main factors that influence the accuracy of a CNN-based
method for face recognition: the training data, the architecture of the CNN,
and the loss function (Saez-Trigueros, Meng and Hartnett, 2018). While
high performance has been derived through softmax’s cross-entropy loss
function, it has been also been argued that it does not generalise well to
subjects not present in the training set.

2.3.6 Conclusion and Future Directions

We have seen here that face recognition is a classification problem not too
different from emotion recognition, and techniques which work well with one
tend to work well with the other. It is nonetheless not the same problem,
and therefore comes with some differences which can be optimised at the
hyper-parameter and architectural level. Deep CNNs have obtained high
results, and have become the standard, but are also very slow to train and
deploy.

In the next chapter 3, we elaborate on the decisions taken on the scope of
the project, and review how the collected data was rigorously pre-processed
to be prepared for the final implementation stage.
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Chapter 3

Data

A primary reason for undertaking this project was to experiment with deep
learning techniques on one’s own personal data, in order to gain an in-depth
understanding of the quality, as well as, the scale of data required for such
a modelling task. While there are a number of open-source datasets readily
available for such projects, in a real-world scenario data is often collected
from scratch, and is considered to be a fundamental part of the data science
workflow.

This part of the process is crucial, a critical process, as not only is it im-
portant to collect and process the data, but also to understand inspect it
as much as possible. We need to understand its distribution and context,
and identify patterns and variations.

This chapter first presents a comprehensive overview of the methodology,
approach and decisions taken with regard to how the data was collected,
stored, processed, and eventually used, before exploring it from a visual and
statistical perspective.

3.1 Collection

First of all, it is important to remember that the goal was to develop a ro-
bust model capable of extracting facial information in-the-wild. Therefore,
working with a ready-made dataset of cropped faces under optimal lighting
conditions specifically for recognition tasks was not considered, even though
there are in-the-wild datasets are available.

Instead, images were collected from a number of personal sources, such as
Google Photos, Dropbox, Facebook, as well as, private photographs dating
from ten to fifteen years ago stored on old external hard drives. One of the
reasons for using old photographs besides increasing the size of the dataset,
was to account for ageing over time, and see how well the model would be
able to generalize for subjects with photographic samples spanning more
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than a decade.

It is important to note that this data collection process was conducted
only to solve the facial recognition and gender classification tasks. As-
sembling and labelling a large quantity of data for the emotion detection
problem would be incredibly challenging, as it is a significantly more com-
plex problem, which is why, the FER2013 dataset was employed instead. It
was prepared and pre-processed in the same way as our personal dataset,
further explained in-depth in the sections below.

3.2 Bounding Scope

A notable issue when working with the personal dataset was that the sample
size distribution was vastly unbalanced, even when discarding classes below
a certain threshold. Indeed, the two most common classes had around a
thousand observations each, whereas the lowest class only a few.

Furthermore, the majority of images in the dataset contained more than one
face. Hence, even though Google Photos automatically sorted the dataset
of images according to each individual’s face, additional individual and la-
borious sorting was required as the model needed labelled and cropped faces
for each class during training.

Given the above-mentioned reasons, it was crucial to take some key de-
cisions, early on in the project, with regard to the scope of the model’s
classification in terms of the final number of classes, as well as, how the
data imbalance would be addressed.

Thus, a review of common facial recognition datasets, such as VGGFace21

was therefore undertaken to aid decision-making. The review revealed that
although the available datasets often contained multi-million number of
faces, and thousands of classes, the average number of samples per class
happened to be roughly around a thousand, which similar to the top classes
in our personal dataset.

Moreover, the practical applications of such a model were also rigorously
considered, to ensure that none of the time, energy, and effort spent on the
project was wasted. For example, it was discovered that if a model was
reasonably well-optimised, it could be run on Raspberry Pi through Ten-
sorFlow Lite. In which case, it could have multiple useful home-automation

1VGGFace2 - A large scale image dataset for face recognition. http://www.robots.
ox.ac.uk/~vgg/data/vgg_face2/. (Accessed on 08/10/2019).

http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
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usages if run in real-time with the aid of a camera, such as being able to
tell who was at the door every time the doorbell rang. Alternatively, the
model could potentially be integrated with an Android application for vari-
ous other purposes and could even delve into the realm of recommendations
systems, based on the mood of the subject. The key point for considera-
tion was to focus on collecting data which would help in the development
of a model capable of substantially improving the quality of life at home,
rather than one proficient at generalising over a large number of individuals.

To this end, it was finally decided to restrict the scope of the project only
to my immediate family - comprising four individuals - myself, my sister,
mother and father, and who also happened to be the ones with the highest
number of samples. Moreover, issues around data consent and privacy were
easily addressed, as my family fully supported and consented to partici-
pating in the project. Nonetheless, starting a deep learning project with a
relatively small dataset was a daunting prospect, with a lot of unknowns,
and requiring further engineering. The next sections describe, in depth, the
challenges encountered and the solutions formulated.

3.3 Preparation

Once the data was collected from the various sources, it needed to be pre-
pared in a regulated format for all models. The first step was to meticulously
sort all the images by classes, even though most images contained multi-
ple faces, inducing multiple crossovers between classes. The next step was
to crop and save only the faces in all the images, again sorted by class.
To this end, a small Python script, prepare_cropped_faces.py, given in
section D.10, was written, which would look at all the images in a given di-
rectory, and output images of cropped faces on the given output directory.

Figure 3.1: Sample image and corresponding cropped
faces. OpenCV can occasionally miss real faces due to partial

occlusion (false negatives).
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A number of off-the-shelf libraries were suitable for this task, including ones
which used convolutional neural networks2, however OpenCV was eventually
used for the task because of high-speed performance , as well as, ease of
access (uncommon packages tend not to be pre-installed in environments).

Once the 28x28 cropped faces were available in a new folder, these again
had to be manually sorted, to remove the numerous false positives detected
by OpenCV, as well as, faces which did not belong to the specific class in
question. Once the process was repeated for all four classes, the images
were double-checked multiple times as part of the ‘data cleaning’ process to
ensure there was an absolute 0% error rate in the class labels.

Figure 3.2: False positives samples marked as faces by
OpenCV.

The labeling of each class was done in a simplified manner while importing
the data into the model. A list of ground truth labels was simply created in
Python according to the length of each class size, e.g. 1000 labels of class
0 for the first class, 800 labels of class 1 for the second class, etc.

3.4 Storage

Once the final, clean data was available in directories, one could simply
import them into Python using OpenCV’s cv2.imread() method. However,
the lack of vectorisation slowed down the process, and it would take up to
40 minutes in total to import all classes - a significantly inefficient process
for a relatively small dataset.

Although OpenCV proposed no direct method to store colour images, due
to their 3-dimensional nature, an elegant solution was to simply reshape
each image’s pixels, a task made easily possible with NumPy. Thus, another
script, convert_images_to_data.py, shown in section D.11, was written
to reshape all the images in a given input directory, and output them as a
.csv file. Each row of this file would contain the data of a single 28x28x3
cropped face image, reshaped to a single (2352,) line.

This method allowed the dataset of images to be neatly loaded in a NumPy

array in less than a minute, representing a 40x increase in loading speed.
2Multi-Task Convolutional Neural Network https://github.com/jbrownlee/mtcnn.

(Accessed on 08/10/2019).

https://github.com/jbrownlee/mtcnn
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3.5 Pre-processing

The following steps were taken within the models at each execution, after
the data was imported from the .csv files for each class.

3.5.1 Conversion to RGB

Firstly, the entire data of each class was loaded into the memory though
Pandas’ read_csv method. Since OpenCV was employed for face detection,
and read images in BGR, as opposed to RGB, the data was converted to the
latter format with cv2.cvtColor(image,cv2.COLOR_BGR2RGB). No com-
putation is needed for this conversion, as the data is simply re-arranged.

Figure 3.3: Sample image in BGR and RGB format.

3.5.2 Histogram Equalisation

The next step was to perform histogram equalisation, a process which in-
creases the global contrast of an image by levelling its histogram. It can
produce results which may look odd to the human eye, but are useful from
a numerical point of view, as it is easier to differentiate between features
when they are more strongly accentuated. A histogram of an image can be
calculated with cv2.calcHist(images,channels), and then accordingly
adjusted with cv2.equalizeHist(image).

Figure 3.4: Histogram equalisation concept through a
transformation T. Taken from Wikipedia (2019)

The mathematics behind histogram equalisation is relatively easy to grasp,
and can be explained through the equations below. We assume H(p) is
the image’s current histogram, ranging over [p0, pk], which constitute the
intensity of a channel. H(pi) thus represents the number of pixels with level
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pi. Similarly, T (q) represents the transformed equalised histogram, ranging
over [q0, qk]. There are n number of pixels, ranging from q0 to q, which in
the case of an un-normalised image would be 0 and 255, respectively. The
equalised histogram is the same as the original one, but simply with its
values evenly distributed. Consequently, the total number of pixels remains
the same, as summarised by Equation 3.1.

k∑
i0

T (qi) =

k∑
i0

H(qi) (3.1)

Furthermore, as T follows a uniform distribution, we can derive its cumu-
lative distribution as shown in Equation 3.2.

T (q) =
n

qk − q0
(3.2)

We can modify Equation 3.1 to be represented in a continuous space, in
order to derive the monotonic transformation function τ which equalises the
histogram. As we can see, the derived calculation is not computationally
intensive. The original p values are simply ‘shifted’ to the new q values.∫ q

q0

T (s)ds =

∫ q

q0

H(s)ds

⇔
∫ q

q0

n

qk − q0
ds =

∫ q

q0

H(s)

⇔ n

qk − q0

∫ q

q0

ds =

∫ q

q0

H(s)

⇔ n(q − q0)
qk − q0

=

∫ q

q0

H(s)

⇔ q =
qk − q0
n

∫ q

q0

H(s) + q0

⇔ q = τ =
qk − q0
n

∫ q

q0

H(s) + q0

⇔ q = τ =
(qk − q0

n

p∑
i=p0

H(i)
)
+ q0

(3.3)

It is to be noted that equalisation with OpenCV can only be done on a single
channel at a time, as it is usually used on grey-scale images. However, ap-
plying it per channel allows us to equalise an image in different ways. The
cv2.split() method, as shown in Listing 3.1, separates an image into the
desired type of channels, e.g. RGB, HSV, and YCrCb. This allows us to
select and operate precisely on the required channel, resulting in different
final results, as demonstrated in Figure 3.5.

1 de f equal ise_image ( s e l f , image , eq_type=’HSV ’ ) :
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2 i f eq_type == ’HSV ’ :
3 H, S , V = cv2 . s p l i t ( cv2 . cvtColor ( image , cv2 .COLOR_RGB2HSV) )
4 eq_V = cv2 . e qua l i z eH i s t (V)
5 re turn cv2 . cvtColor ( cv2 . merge ( [H, S , eq_V ] ) , cv2 .

COLOR_HSV2RGB)
6 e l i f eq_type == ’YCrCb ’ :
7 Y, Cr , Cb = cv2 . s p l i t ( cv2 . cvtColor ( image , cv2 .

COLOR_RGB2YCrCb) )
8 eq_Y = cv2 . e qua l i z eH i s t (Y)
9 re turn cv2 . cvtColor ( cv2 . merge ( [ eq_Y, Cr , Cb ] ) , cv2 .

COLOR_YCrCb2RGB)

Listing 3.1: Different ways of equalising histograms for
global contrast correction.
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Figure 3.5: An image modified in three different ways,
using global contrast equalisation, with their respective his-

togram distributions.
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There are a other more sophisticated histogram equalisation techniques,
such as Adaptive Histogram Equalization (AHE) and Contrast Limited Adap-
tive Histogram Equalization (CLAHE), which employ adaptive methods, as
opposed to ones which work on the global contrast. CLAHE works similar to
‘tile-coding’, i.e. an image is divided into a given number of tiles, each of
which is then independently equalised. That way histograms are confined
to only a small portion of the image, unless there is a certain amount of
noise. In which case, contrast limiting is applied, which clips off contrast
values which are above a certain threshold, and distributes them over other
bins.3
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Figure 3.6: Channel image equalisations using CLAHE.

For our model, global contrast adjustment was chosen over more sophis-
ticated methods, as this needed to be performed on an already cropped
region of a photo. From the available methods, HSV equalisation channels
were preferred over RGB or YCrCb ones, as the former yielded the best visual
results.

3.5.3 Normalising Data

The image values have by now been modified multiple times, but are still
in the [0, 255] range. The next step was to normalise all our data to, either
between [0, 1], or [−1, 1]. It is highly recommended to keep all the input
values small, to avoid having large gradient updates which can prevent a
model from converging. Furthermore, all the input features should be in
the same scale, so that the model is not biased towards a feature simply
because it has larger absolute values. This also ensures faster convergence
in training during the gradient descents.

3OpenCV: Histograms - 2: Histogram Equalization https://docs.opencv.org/3.1.
0/d5/daf/tutorial_py_histogram_equalization.html (Accessed on 08/11/2019).

https://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html
https://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html
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Although this task sounds trivial, in truth it can be done in several ways,
which surprisingly, produce substantially differing results. The first deci-
sion to make was whether to normalise over the entire image, or over each
feature independently - in our case for example, over the R, G, B channels.

Another choice, was to decide whether to normalise the data between [0, 1],
rescale (between [−1, 1], or else standardise to have a mean of µ = 0 and
standard deviation of σ = 1. As all these choices are mutually exclusive,
only one of them can be selected. In addition, if selected, the standardis-
ation method could be executed on each image independently (fixed-image
normalisation), or over the entire training dataset, with the test dataset
later adjusted with the same parameters µ and σ (group normalisation).

Eventually, the fixed-image and feature-independent standardisation method
was preferred, as it first centred the data of each channel around the mean
for each image, before bounding it with a maximum deviation of 1.

1 de f standardise_image ( s e l f , image ) :
2 ’ ’ ’ S tandard i se an image per channel ’ ’ ’
3 means = image . mean( ax i s =(0 ,1) )
4 s td s = image . std ( ax i s =(0 ,1) )
5 re turn ( image − means ) / s td s

Listing 3.2: Used method for standardising data.

3.6 Augmentation

Despite all the measures taken so far to ‘improve’ our data, it was still far
from sufficient for training multiple conventional convolutional networks.
The two principal reasons for this were the low quantity of data, and the
data imbalance.

Nonetheless, it is important to bear in mind, that the quantity of required
data for the model to produce competent results is also relative to the com-
plexity of the model, i.e. the size and depth of the network that it would
train on. This is due to the very nature of convolutional neural networks
and their ability to learn local and translation invariant features, which al-
lows them to be highly data-efficient on computer vision tasks.

Therefore, in order to fully ensure no issues arose, and to build a robust
foundation for all models, we approached the problem from both sides. On
the one hand, we kept our model relatively simple and shallow for the facial
recognition and gender classification tasks (explained in-depth in chapter 4),
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and on the other hand, we used data augmentation to increase the total
number of samples, in order to more accurately equalise the data imbalance
between classes.

Data augmentation is a technique which performs many simple affine trans-
formations on existing images to produce similar, but augmented ones,
which act like new training data for the model. Furthermore, it also helps
to counter over-fitting in models which could learn to simply memorise the
training data and lose the ability to generalise on unseen images.

This can be implemented in several ways, some easier than others. For ex-
ample, Keras, a deep learning library, contains the ImageDataGenerator()
method which allows easily configurable data augmentation in real-time,
i.e. as the model is training. Alternatively, there are other modern Python
libraries, not specifically linked to Keras or TensorFlow, such as ImAug,
Augmentor, and Albumentations, developed by Jung (2018), Bloice, Roth
and Holzinger (2019), and Buslaev et al. (2018) respectively.

To fully understand and control the process, as well be able to closely fine-
tune the parameters, manual data augmentation, specifically Albumentations,
was preferred over the more automated processes such as with Keras.

It was hard to find a precise rule-of-thumb for data augmentation, but
we decided to augment each class by a certain factor, each of which would
be 70% weak augmentations and 30% strong ones. Both of these have a
certain number of total possible applicable transformations, which can be
randomly applied based on defined probabilities. Thus, each augmentation
is a different, random, and likely unique overall transformation, defined by
a number of small affine transformations. The distinctive feature between
weak and strong augmentation is that the latter contains ‘grid distortions’,
a transformation which bends an image’s grid-lines in a non-linear way, and
thus distorts the image more so than any other method.

Original Weak Strong

Figure 3.7: Sample image compared with possible aug-
mentations.
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Note that neither of the two augmentation types apply any right angle rota-
tions, transposes, or vertical flips, as convolutional neural networks are not
invariant to rotations despite being invariant to translations. Indeed, the
weak and strong augmentations have a rotation limit of 10 and 45 degrees
respectively. The final code used for creating weak augmentations is shown
in Listing 3.6. Other common transformations include colour changes, mo-
tion blurs, Gaussian noises, optical distortions, and interestingly CLAHE.

1 de f weak_aug( s e l f , p=0.5) :
2 ’ ’ ’ Create a weakly augmented image framework ’ ’ ’
3 re turn A. Compose ( [
4 A. Hor i zon ta lF l i p ( ) ,
5 A. OneOf ( [A. IAAAdditiveGaussianNoise ( ) , A. GaussNoise

( ) , ] ,
6 p=0.2) ,
7 A. OneOf ( [A. MotionBlur (p=0.2) , A. MedianBlur (

b lur_l imi t =3,
8 p=0.1) ,
9 A. Blur ( b lur_l imi t =3, p=0.1) , ] , p=0.2) ,

10 A. Sh i f tS ca l eRota t e ( s h i f t_ l im i t =0.0625 , s c a l e_ l im i t
=0.2 ,

11 r o ta t e_ l im i t =10, p=0.2) ,
12 A. Opt i c a lD i s t o r t i on (p=0.2) ,
13 A. OneOf ( [A.CLAHE( c l i p_ l im i t =2) , A. IAASharpen ( ) ,
14 A. IAAEmboss ( ) , ] , p=0.3) ,
15 ] , p=p)

This task could have also been pre-processed and stored in the dataset in
order to speed up the process of modifying data, but as augmentation is
most often performed during training, it was preferred to keep it inside the
model, in order to keep the augmentations random and different each time.

3.7 Exploration

Once our dataset is processed, augmented, and finally static, we can explore
the data from a visual perspective, as well as, by looking at the actual counts
and relative frequencies. Figure 3.8 and 3.9 show the different classes of the
datasets as bar and pie charts.
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36 Chapter 3. Data

Myself

Sister

Mother

Father

Male

Female

Angry
Disgust

Fear

Happy

Sad
Surprise

Neutral

Figure 3.9: Datasets class distributions viewed as pie
charts.
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Figure 3.10: PCA plot of the dataset sorted per classes.
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Figure 3.12: PCA plot of FER2013 dataset sorted per
emotions.

We can also visualise the data by conducting Principal Component Analy-
sis on the dataset, and colour coding it according to the classes, as shown
on Figure 3.10, 3.11, and 3.12. This reduces the dimensionality of the
data from a four-dimensional space (number of images x 28 x 28 x 3) to a
two-dimensional one, allowing us to plot and visualise the whole data space.

Finally, we report the actual counts of each class in their respective databases,
as given below in Table 3.1, 3.2, and 3.3, alongside their respective relative
frequencies.

Table 3.1: Count and relative frequencies of dataset by
classes.

Class Original Augmented Total Frequency

Myself 1078 6468 7546 0.305
Sister 1117 6702 7819 0.316
Mother 564 6204 6768 0.274
Father 153 2448 2601 0.105

Total 2912 21822 24734 1.0
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Table 3.2: Count and relative frequencies of dataset by
gender.

Class Original Augmented Total Frequency

Male 1231 8916 10147 0.41
Female 1681 12906 14587 0.59

Total 2912 21822 24734 1.0

Table 3.3: Count and relative frequencies of FER2013 by
emotions.

Class Total Frequency

Angry 8988 0.251
Disgust 6076 0.169
Fear 4945 0.138
Happy 4001 0.112
Sad 5121 0.143
Surprise 547 0.015
Neutral 6197 0.173

Total 35875 1.0

This gives us a concrete idea of the data we shall be working with, sending
it to our models to train with, and finally predict on unseen data. In the
next chapter 4, we shall look into designing the models themselves.
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Chapter 4

Design and Engineering

Thus far, we have directly worked on the data - processing and augment-
ing it till a satisfactory level. However, when designing the actual models
themselves and their surrounding ‘systems’, it is important to build them
with strong software engineering principles from the very outset. As neu-
ral networks are not an ‘off-the-shelf’ technology and can often fail silently
in a number of ways, they require considerable thought during the design
and engineering phase. The sections below give an overview of all the key
design principles and guidelines used in building the system and models,
an intensively demanding and time-consuming task. The reasoning behind
each decision also gives an insight into the iterative ‘design-and-implement’
workflow, as well as, our approach towards the various issues which needed
to be continuously resolved to achieve the final product.

4.1 Workstation

The first and foremost step before actually even working on the models was
to establish a stable workstation conducive to a productive workflow envi-
ronment. To this end, two different alternatives were possible, as explained
in the following paragraphs.

4.1.1 Local

The initial Python scripts for data pre-processing were written on a simple
text editor, namely Sublime Text, which was the easiest and light-weight
method. However, it quickly became limited for any tasks which demanded
visualisations and quick turnovers. To this end, Jupyter notebooks were
preferred, as the modular and individual cells were more practical for our
iterative development methodology and rapid debugging.

However, the actual training process on a local laptop was far from ideal,
as the hardware wasn’t optimised for deep learning in any way, nor did it
contain any graphical processing units to speed up the process. Training for
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50 epochs could easily take up to an hour, only to sometimes not converge
because of a silent bug.

4.1.2 Kaggle

Kaggle kernels were therefore chosen for the faster processing speed and
state-of-the-art hardware. As of August 2019, the specifications were as
given in Table 4.1.

Table 4.1: Hardware specifications of Kaggle kernels.

Hardware Value

NVIDIA-SMI 418.67
Driver Version 418.67
CUDA Version 10.1
GPU Tesla P100-PCIE-16GB
GPU Name Persistence-M
CPU Cores 4
CPU RAM 16 GB
GPU CPU Cores 2
GPU RAM 13 GB

While working with Kaggle kernels allowed for faster model convergence,
it also slowed down productivity on some other aspects. For instance, the
entire notebook had to be ‘committed’ (run) from top-down, in order to
produce any output files, such as graphs, weights, checkpoints, etc. which
was particularly exhausting for simple situations, for example when only a
single plot was required.

Furthermore, in order to import a custom class, i.e. one written by our-
selves, and which included useful methods common to all models, one had
to import it as a ‘utility script’ at the initialisation of a Kaggle kernel. If
a change was to be made in the utility script, then it had to be edited
on Kaggle, saved, and then required the model notebook to be restarted.
While this is not too different from a local workflow, the multiple reloads
and commits often made debugging and adding new features particularly
tedious and slow, even as it speeded up the training and also improved the
speed of general executions.

Nonetheless, the utility scripts and multiple models were all eventually de-
veloped using the Kaggle kernels as workstations. Moreover, the commit
history of each model gave a clear view of the incremental evolution, which
also provided some insight into the software development methodology.
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4.2 Modularity

The first and foremost design principle was to keep everything modular.
This was particularly relevant in our context, as we had three concrete
tasks to solve, each of which could have several models. In order to reduce
redundancy and keep debugging at a manageable scale, class templates were
designed for the most common methods.

This idea, like most software development decisions, was a package deal
which came with its own set of pros and cons. On the one hand, the code
used on different notebooks was identical yet non-repetitive, and much more
manageable. But on the other hand, the process of building classes sepa-
rately, ensuring their flexibility, and debugging and testing them on other
notebooks was a much more iterative and slower process than simply writing
code directly on the current notebook. It was also important to maintain
consistency over all the methods, in order to be able to compare results
across models. Similarly, we had to ensure the output items, such as graphs,
weights, and checkpoints were all saved with a similar formatting style, such
as the DPI value, grid structure, colours, etc.

Eventually, the following three external classes were developed in order to
aid the tasks at hand:

• myutilitymethods.py, given on section D.3.

• mycnn.py, given on section D.5.

• mydeepcnn.py, given on section D.6.

The key to developing myutilitymethods.py was understanding the fact
that all the three tasks - face recognition, gender classification, and emotion
detection - were all bounded, i.e. had a pre-defined number of class vari-
ables. For instance, face recognition had a total of 4 distinct classes, gender
classification had 2, and emotion detection 7. Each of these could simply
be defined by three Python variables, as shown in Listing 4.1.

1 class_to_num = {
2 ’ Mysel f ’ : 0 ,
3 ’ S i s t e r ’ : 1 ,
4 ’Mother ’ : 2 ,
5 ’ Father ’ : 3
6 }
7 num_to_class = [ ’ Mysel f ’ , ’ S i s t e r ’ , ’Mother ’ , ’ Father ’ ]
8 NUM_CLASSES = 4

Listing 4.1: The core variables for the facial recognition
model.
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These are effectively all the essential variables required by a model to be
able to use the common methods. An additional class_colors list variable
could be used if we want each class to have a pre-defined colour, but it is not
indispensable. The common methods class myutilitymethods can thus be
loaded in the model notebook with the core variables as shown in Listing 4.2.

1 from myuti l i tymethods import MyMethods
2 mm = MyMethods(NUM_CLASSES, num_to_class , class_to_num )

Listing 4.2: Importing and instantiating
myutilitymethods

We now have access to all the methods defined in the myutilitymethods.py
file, imported as a MyMethods class, and instantiated as mm. Once an under-
standing of the core variables was defined, and the flow of data clearly es-
tablished, it was a straightforward, albeit tedious, process of simply adding
new methods to the MyMethods class, which would be callable across any
model. As such, the first few methods to be written were the data pre-
processing ones, such as convertToRGB(), equalise_image(), augment_

images(), standardise_images(), as given earlier in chapter 3.

It is to be noted, that all the methods which required external libraries, such
as sklearn or TensorFlow had to be called inside the myutilitymethods.py
file itself, and not the model notebook, to be functional. This process was
also the one where the utility and importance of clear documentation fully
came into play. Which is why, each method includes a docstring and in-
line comments to explain the flow of data. The full list of methods in
the class, and their respective docstrings, can thus easily be seen with the
dir(MyMethods) or help(MyMethods) commands.

4.3 Reproducibility

The second main design principle was to ensure reproducibility. Indeed,
each new component added to a model had to not only be modular, but
also work in the anticipated way, with no unexpected or random changes.
This meant engineering systems which could take in pre-defined seeds as
parameters and use them for any actions which required random values.
For instance, the data is not only randomly shuffled at the very start after
initially loading it from the .csv file, but also at the start of each epoch
during the training phase, as demonstrated in Listing 4.3.

1 from sk l ea rn . u t i l s import s h u f f l e
2

3 #Shu f f l e order f o r both subse t s i n s i d e a c l a s s
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4 x_in , y_in = s h u f f l e ( x_in , y_in , random_state=s e l f . seed )
5 s e l f . x_val , s e l f . y_val = s h u f f l e ( s e l f . x_val , s e l f . y_val ,

random_state=s e l f . seed )

Listing 4.3: Mixing different data batches with the same
seed.

Having a pre-defined seed helped ensure a result that was never a one-off
and was always replicable. This was particularly relevant as we wanted
to clearly show the evolution and growth of the system over time, which
therefore required previous results to still be obtainable. The mycnn.py and
mydeepcnn.py classes were both designed and developed with these ideas in
mind, which helped ensure that as new modular features were being added
to the systems, there was always an option of not using them, and obtaining
the previous results again.

4.4 Flexibility

Another important design principle was flexibility. Specifically, this is in the
context of the quantity of data, which can theoretically vary throughout the
development of the project. Indeed, it was in our interest to keep collecting
data, even if we have completed data pre-processing, as this is arguably the
most certain way of improving the quality of a model. Additionally, one
could have decided to increase number of classes later, as and if we wanted
to add individual subjects in order to expand the scope of our project.

Thus, it was important to develop a system which could receive a flexi-
ble amount of inputs. This might sound straightforward, but when training
or testing the model in batches, having several samples which cannot be
directly divided by the batch size can be tricky to handle. Furthermore, the
actual need of batches can vary depending on the quantity of input samples,
as the optimal batch-size depends on the workstation’s hardware specifica-
tions. In many cases, we discovered that it was actually more optimal to
have batches sizes as a constant value (as opposed to a flexible one), when
dealing with a number of samples which were below a certain threshold, as
these would directly fit into a GPU or CPU’s cache.

One had the choice of hard-coding the batch sizes to a set constant, in-
putting it in the model class as a parameter, or else automating the process
by having the size directly vary as a function of the total number of input
samples. Eventually, the option of having it as a class parameter vari-
able was chosen, as many sources cited limiting the training batch-size to
around 30, but recommended tuning it according to the size of the inputs
and other model parameters. Additionally, batches were simply discarded



44 Chapter 4. Design and Engineering

during testing for prioritizing speed, as the batches were only really useful
for optimising the gradient descents during the training.

4.5 Validation

As with any software engineering task, one has to ensure that it will not
crash in different test case scenarios, and is robust enough to competently
handle unexpected inputs.

For neural networks, it is very important to always know what is being
fed to the network at the very start. For example, our CNN model takes
in the labels as a (num_samples,num_classes) array of one-hot encoded
values. If the standard, non-encoded, one-dimensional list of labels is pro-
vided instead, the network could potentially still execute without giving a
direct error; and, depending on the nature of the methods employed, make
the ensuing debugging process of ‘silent failures’ all the more harder.

Therefore, the most efficient method for catching such bugs is in fact to
use assert statements which verify the expected shape of the input data be-
fore it is fed to the model. In addition, we can also use assert statements to
ensure that the previous data pre-processing successfully modifies the data
as expected, such as converting the mean µ to 0, and standard deviation σ
to 1, as shown in Listing 4.4. This ensures that obvious errors are caught
and dealt with, well before the system starts training.

1 # One−hot encode
2 y_train = mm. one_hot_encode ( y_train )
3 y_test = mm. one_hot_encode ( y_test )
4

5 # Assert shapes
6 a s s e r t ( y_train . shape [1]==NUM_CLASSES)
7 a s s e r t ( y_test . shape [1]==NUM_CLASSES)
8

9 # Assert std devs
10 a s s e r t (np . round ( x_train [ 0 ] . s td ( ) , 3) == 1)
11 a s s e r t (np . round ( x_test [ 0 ] . s td ( ) , 3) == 1)
12

13 # Assert means
14 a s s e r t (np . round ( x_train [ 0 ] . mean ( ) , 3) == 0)
15 a s s e r t (np . round ( x_test [ 0 ] . mean ( ) , 3) == 0)

Listing 4.4: Code to check various shapes and values.

The model can still fail silently if there are fundamental issues with its en-
gineering design. However, we can nonetheless look into resolving some
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of these issues, which are related to other class parameters and hyper-
parameters. The model_summary() method gives the model’s architecture
by printing out the shapes of each of its layers, as shown in Listing 4.5.

1 f i r s t_ l a y e r : conv2D − ( ? , 25 , 25 , 32)
2 second_layer : conv2D − ( ? , 11 , 11 , 64)
3 th i rd_layer : conv2D − ( ? , 4 , 4 , 128)
4 f ourth_layer : conv2D − ( ? , 1 , 1 , 256)
5 f l a t t e n e d . : F lat ten − ( ? , 256)
6 l o g i t s : Dense − ( ? , 7)
7 preds : Softmax − ( ? , 7)

Listing 4.5: Values returned by model_summary().

Similarly, the model_variables() method prints out the list of input pa-
rameters, defined by the user, as given in Listing 4.6.

1 x_train : (34081 , 28 , 28 , 3)
2 y_train : (34081 , 7)
3 x_test : (1794 , 28 , 28 , 3)
4 y_test : (1794 , 7)
5 output_dir : . / FER_logdir/
6 l r : 5e−05
7 nb_epochs : 50
8 batch_size_tra in : 30
9 seed : 0

10 nb_classes : 7
11 nb_images : 34081
12 nb_tra in_ite rat ions : 1136
13 im : Tensor ( " P laceho lde r : 0 " , shape =(? ,28 ,28 ,3) )
14 l a b e l s : Tensor ( "Placeholder_1 : 0 " , shape =(? ,7) )

Listing 4.6: Values returned by model_variables().

Both these methods were indispensable tools for debugging errors or testing
different scenarios when building the mycnn.py and mydeepcnn.py models.

4.6 Incremental design

Despite the prevention measures put in place, several issues still remain,
which can cause neural networks to fail silently. Some of the common ones
which are listed below.

• Off-by-one error.

• Inputs and labels not shuffled with the same seed.

• Provided inputs without pre-processing or with incorrect shapes to
model.
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• Mismanaged parameters such as regularisation, learning rate, decay
rate, etc.

• Didn’t account for augmented data when making labels for input data.

• Mixed up different tf sessions, graphs and checkpoints.

• Passed softmax outputs to a function which expected raw logits.

The best methodology to avoid such issues is to never let them happen in
the first place. Indeed, our last principal design policy and the fundamental
blueprint for building our neural networks was to keep things simple. This
meant: first ensuring that the initial results were in line with what was
expected, and only then hypothesise on what an additional feature might
do. After we implemented it, we again ensured that the new results were
as expected, and so on. Adding a lot of initial unverified complexity such as
drop-out layers, batch normalisation, back-tracking, etc. would have need-
lessly slowed down any potential debugging process, and was thus carefully
avoided until a simpler baseline method could first be established.

As we have shown in this chapter, the design and engineering part of this
project included a lot of careful thought and experimentation, which would
often validate or discredit new features, and thus influenced the final soft-
ware. This was a fundamental part of the project, and was given as much
time, importance, and appreciation as the more scientific aspects relevant
to data science, and is further elaborated in the next chapter 5: Implemen-
tation.
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Chapter 5

Implementation

This chapter provides a comprehensive and more granular review of all
the implemented items which especially played a critical role in the devel-
opment of the two network classes mycnn.py and mydeepcnn.py. This not
only includes elements such as the parameters, hyper-parameters, validation
methodologies, architectures, and metrics, but also the experimentation and
reasoning behind the decisions to use them. In this chapter, we consolidate
all the knowledge and logic behind the development of the various models
using the two network classes, in order to finally solve our three tasks.

5.1 Networks Architectures

5.1.1 My CNN

The fundamental idea behind the MyCNN network design was to keep it as
simple as possible. Indeed, in consideration of the low amount of available
data (relative to known open-source datasets which have millions of sam-
ples), the network was chosen to be shallow and contain the least amount of
complexity as possible. We in fact wanted to determine how well a model of
only a few layers would work on a dataset of around 22000 samples. As the
total number of classes of two of the main tasks was small - only four for
facial recognition and two for gender classification - we hypothesised that
the complexity described in the paragraphs below would be sufficient for
these two tasks.

Bearing this in mind, we therefore decided to only have 4 convolutional
layers with rectified linear unit (ReLU) activations acting on our 28x28x3
RGB input image, which would be passed on to a fully connected layer to
obtain the raw logits. Finally, the outputs were acquired in the last layer
through the means of a softmax activation function. The design principles
described in chapter 4 also allows a user to alternate between a softmax
and a sigmoid activation function for the final layer if necessary. This flag
switches the optimiser’s function between a softmax or sigmoid cross en-
tropy loss.
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The details of this specific architecture can be seen in Table 5.1, and visu-
alised in Figure 5.1. It is to be noted that the latter shows the final logits
and outputs if applied to the emotion classification task, as the final num-
ber of classes shown is 7. For the facial recognition or gender classification
tasks, the final layer’s size would be 4 or 2 respectively.

Table 5.1: MyCNN architecture table.

Layer Input Filter Stride # Filters Activation

Input 28x28x3
Conv1 5x25x32 4x4 2 32 ReLU
Conv2 1x11x64 4x4 2 64 ReLU
Conv3 4x4x128 4x4 2 128 ReLU
Conv4 1x1x256 4x4 2 256 ReLU
FC 256 Linear

Logits num_classes Linear
Output num_classes Softmax

28

25

3

28

25

11

11

4

128

4 256

7
7

64

32

Figure 5.1: Diagram of MyCNN architecture.

The idea of using a shallow network was based on the convolutional neural
networks used to model on the MNIST dataset, which also contained 28x28
images, albeit in greyscale instead of RGB. The same architecture has been
previously shown by Megagenta and Sarkar (2019) to get 98.9% accuracy
on MNIST classification. The idea was to experiment with a similar archi-
tecture and see if good results could also be reproduced on our personal
dataset, by means of hyper-parameters tuning.

The MyCNN network, although a simple one, was built using TensorFlow,
which has a relatively steep learning curve, especially because of the multiple
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and separate writer, saver, and graphs variables. The network was imple-
mented with three set-up functions - set_up_saver(), compute_loss(),
and optimizer(), which initialised the variables mentioned earlier; and
three core functions - create_model(), train(), and test(), which worked
on the input data variables such as x_train, y_train, x_test, and y_test.

5.1.2 My Deep CNN

In the event where the shallow network MyCNN was unable to generalise well
to a complex task, such as emotion classification, a second, deeper network
was also prepared, which made use of much more advanced deep learning
techniques, such max-pooling, dropouts, and decaying learning rates. As
represented in Figure 5.2 (also in Figure F.1), and shown in Table 5.2, a total
of 8 convolutional layers were used, as well as, 4 max-pool and 3 dropout
ones. The weights were then flattened, before an additional 3 alternating
dense and dropout layers were employed. Each convolutional layer had
the parameter ‘same’ as padding, which ensured that the output of the
layer in question had the same length as the input. In this model, both
the convolutional and dense layers were activated with ReLU functions.
Finally, the output was calculated using a softmax activation function.
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Figure 5.2: Diagram of MyDeepCNN architecture.

Since the training process with this deeper network was subsequently much
longer than the shallow one, it was vital to use batch-normalisation for op-
timised gradient descents, as well, as some slightly different variables. For
example, Adam was once again used as the optimiser, but with a beta1

value of 0.9 and a new beta2 value of 0.999. L2 kernel regularisation was
additionally employed on the first convolutional layer to prevent over-fitting.

As this network was substantially more complex than the previous shallow
one, a higher-level and easier-to-use library called Keras was used instead
of TensorFlow. This required numerous syntactic and logical changes in the
code structure. However, the overall final code was much simpler to use,
deploy and debug, despite being more complex than the shallower model
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using TensorFlow. Indeed, the entire network was essentially built on only
three simple methods: create_model(), train(), and test(). Unlike Ten-
sorFlow, Keras weights were not stored as checkpoint executables, but as
.h5 files.

Table 5.2: MyDeepCNN architecture table.

Layer Size Filter Stride # Filters Activation

Input 28x28x3
Conv1 26x26x64 3x3 1 64 ReLU
Conv2 26x26x64 3x3 1 64 ReLU

BatchNorm1 26x26x64
MaxPool1 13x13x64 2x2 2
Dropout1 13x13x64

Conv3 13x13x128 3x3 1 128 ReLU
BatchNorm2 13x13x128

Conv4 13x13x128 3x3 1 128 ReLU
BatchNorm3 13x13x128
MaxPool2 6x6x128 2x2 2
Dropout2 6x6x128

Conv5 6x6x256 3x3 1 256 ReLU
BatchNorm4 6x6x256

Conv6 6x6x256 3x3 1 256 ReLU
BatchNorm5 6x6x256
MaxPool3 3x3x256 2x2 2
Dropout3 3x3x256

Conv7 3x3x512 3x3 1 512 ReLU
BatchNorm4 3x3x512

Conv8 3x3x512 3x3 1 512 ReLU
BatchNorm5 3x3x512
MaxPool4 1x1x512 2x2 2
Dropout4 1x1x512

Flatten1 512

Dense1 512 ReLU
Dropout5 512

Dense2 256 ReLU
Dropout6 256

Dense3 128 ReLU
Dropout7 128

Output 7 Softmax
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5.2 Validation Methodology

The input data x and its corresponding labels y can be separated into
training and testing sets. However, it is also important to have a validation
set to measure the performance of the model during the training in order
optimise it by tuning the hyper-parameters. The manner in which the
validation set is taken from the main dataset can be done in a number of
different ways, and which have interesting effects on the bias and variance
trade-off on the measured accuracy. The subsections below analyse and
explain the two validation approaches which were considered - the hold-out
method and k-fold cross validation method - before identifying the approach
that was ultimately selected and used in our models.

5.2.1 Hold-Out Validation

The hold-out validation methodology, also simply known as validation set
approach, separates the entire initial dataset into three categories: training,
validation and testing, as shown in Figure 5.3. The implemented method,
available in the MyUtilityMethods class, can split the dataset in any pre-
ferred ratio, as shown n Listing 5.1.

Training TestingValidation

Figure 5.3: Distribution of data when using hold-out set
validation.

1 de f sp l i t_tra in_va l_te s t ( s e l f , x , y , s p l i t 1 =0.9 , s p l i t 2 =0.95) :
2 ’ ’ ’ S p l i t datase t i n to t ra in , va l i da t i on , and t e s t s e t s ’ ’ ’
3 x_train , x_val , x_test = np . s p l i t (x , [ i n t ( l en (x ) ∗ s p l i t 1 ) ,

i n t ( l en (x ) ∗ s p l i t 2 ) ] )
4 y_train , y_val , y_test = np . s p l i t (y , [ i n t ( l en (y ) ∗ s p l i t 1 ) ,

i n t ( l en (y ) ∗ s p l i t 2 ) ] )
5 re turn x_train , y_train , x_val , y_val , x_test , y_test

Listing 5.1: Method employed to split dataset.

This is the standard and classic way of splitting the data, and the validation
set serves as a constant metric to evaluate the performance accuracy of the
model while it converges. While it is a simple approach from a conceptual
and implementation point of view, it has a number of drawbacks from a
bias-variance analysis perspective. For example, the accuracy and the loss
can both be highly variable, as they simply depend on the split chosen for
the validation set from the overall dataset. Indeed, as the validation set
contains a limited and constant number of total observations, the accuracy
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and loss can vary substantially depending simply on the validation samples
chosen.

Additionally, having a fixed validation set, i.e. the same validation sam-
ples at each epoch, implies that the training data also remains constant, as
the latter is simply the remaining data. Since a model can only train and
fit on the training dataset itself, its performance will decrease as the vali-
dation set size increases, because the latter, in turn, decreases the training
set size. Statistical modelling techniques yield lower overall accuracy when
trained on fewer samples, which suggests that the validation accuracy and
loss might actually overestimate the eventual test accuracy and loss, when
fitting the entire dataset.

5.2.2 k-Fold Cross Validation

A reasonable alternative to the hold-out validation methodology is the k-fold
cross validation method. This method divides the entire training dataset
into k groups, or folds, out of which k− 1 are used as observations samples
for training, and 1 is used as the validation set. As we train through all
the epochs, the validation set is alternated between the k groups, which
eventually allows the model to fit over the entire dataset over the course of
the training, as depicted in Figure 5.4.
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Figure 5.4: Distribution of data when using k-fold cross
validation.

This method reduces the validation variability by a significant magnitude
when compared to the hold-out method, and in turn increases the accuracy
of estimates of the test losses. The k-fold cross validation approach also
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provides a lower bias than the hold-out method, as each training set con-
tains (k − 1)n/k samples, which is generally more than the samples in the
hold-out method, depending on the split parameter and the value of k.
As summarised by James et al. (2014), it has been empirically shown that
the optimal value of k for k-fold cross validation are k = 5 or k = 10, as
these tend not to have a high bias or an excessive variance.

The networks MyCNN and MyDeepCNN both purposefully allow for either
methodology to be used when training a model, as they were engineered
using the design principles outlined in chapter 4. No external library was
used for the development of this feature, as it was implemented in standard
NumPy, and simply required a certain number of shape manipulations in
the training parameter variables. We can thus choose to experiment, both
with and without cross validation, to see if the theoretical results actually
correspond to those in practice, for the various tasks.

Furthermore, the value of k was selected to be equal to the number of epochs,
as opposed to k = 5 or k = 10, as it was a more interesting experiment. This
implied that no validation fold was ever repeated, as k was never smaller
than nb_epochs, and thus divided into exactly k unique groups, one for each
epoch of the training phase. This essentially turns the nb_epochs variable
from a standard parameter into an important hyper-parameter which has
a significant influence on the bias-variance trade-off when using the k-fold
cross validation methodology. This allows us to experiment directly on this
variable and see how well the final results are correlated to the selected
variables and their predicted theoretical behaviour.

5.3 Metrics

Although one might develop various architectures, use different validation
methodologies, and develop an ample number of experiments and hypothe-
ses, in order to effectively compare and evaluate them with one another we
need a comprehensive benchmarking system with common measurement
criteria that can provide feedback on all the different models. The following
paragraphs give an overview of the benchmarking methods used to mea-
sure the performance of the various models, which are included in the My

Utility Methods class.

Since the three main problems to be solved are all multi-classification tasks,
the criteria and evaluation methodology is fundamentally the same, and can
be developed with relative ease. The first two principal metrics are the loss
and accuracy metrics. Both are measured during the training phase against
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the training and validation labels, but the latter is especially relevant when
measuring against the testing dataset. This is indispensable for assessing
whether a model converged during training or not, as they provide metrics
which evolve through the course of the epochs. These learning curves al-
low one to perform the very initial analysis - determining if the model is
over - or under-fitting - which also gives an indication of the bias-variance
trade-off. Based on observations, one can tune various hyper-parameters to
optimise the model and improve its performance.
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Figure 5.5: Conceptual loss and accuracy learning curves
in function of epochs during training. The optimal moment

to stop the training is given in green.

However, much more detailed metrics are required after a certain point in
order to further tweak our system effectively. This is when confusion ma-
trices come into play. The overall mean accuracy of a model reveals no
information about the correct classification rates per class. A classification
model can make two types of errors: it can either correctly classify a sample
in its actual class, or it can incorrectly predict it to be in another class. A
confusion matrix allows one to visualise the accuracy of a model’s classifier
by comparing its predictions against the ground truths for each class.

As shown in Figure 5.6, we can calculate the true positives (TP), true nega-
tives (TN), as well as, false positives (FP) and false negatives (FN), for each
class. This in turn, allows us to derive additional metrics such as the true
positive rate (TPR), false positive rate (FPR), and positive predictive value
(PPV). These are also known as the recall, fall-out, and precision rates, and
can be accurately used to measure a classifier. However, when working with
multiple models, a single, final criteria is often required to concretely rank
their overall performance. The F1-Score is one of the possible metrics for
this scenario, as it gives the harmonic mean of the precision and sensitivity.
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Figure 5.6: Ideal confusion matrix of 4 classes. The diag-
onal and off-diagonal cells represent the model’s normalised
correct and incorrect class predictions rates respectively.

Recall = TPR = TP/(TP+FN) (5.1)

Fall-out = FPR = FP/(FP+TN) (5.2)

Precision = PPV = TP/(TP+FP) (5.3)

F1 Score = (TPR · PPV)/(TPR+ PPV) (5.4)

In addition, we can also use the TPR and TNR to effectively visualise
these evaluation metrics on a graph. The Receiver Operating Characteristic
(ROC) curve is a popular plot which illustrates the diagnostic ability of a
binary classifier system by simultaneously displaying type I and II errors.
It can be visualised by plotting a classifier’s TRP against its FPR, as shown
in Figure 5.7.
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Figure 5.7: Sample ROC curve and its corresponding
Area Under the Curve (AUC). The diagonal baseline rep-
resents a ‘line of no-discrimination’, and the (0,1) spot con-

stitutes the perfect classification point.
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This only works for binary classifications problems, such as the gender clas-
sification task, but can be easily extended to multi-class problems by mea-
suring the rates with a ‘one vs. rest’ methodology, and then plotting the
individual ROC curves for each class. We can then average all the curves to
calculate and plot the macro-average ROC curve, which gives equal weight
to the classification of each class. Moreover, we can also calculate and draw
the micro-average ROC curve by considering each element of the class in-
dicator matrix as a binary prediction.

Finally, an alternative to the F1-score as the overall performance of a clas-
sifier is the Area Under the Curve (AUC) of the ROC curves. It essentially
gives a number to the ROC curves, which tell us the strength of classifi-
cation rates in numbers. We ideally want all our lines to be as close as
possible to the ideal (0,1) point, and thus the AUC to be as close to 1 as
possible.

5.4 Models

Once a comprehensive metrics system which could cover any type of classi-
fication problem and both network architecture types was established, one
had to finally decide on the models for each task. A number of different
models were considered for each task, and the ones listed below in Table 5.3
were the models that were implemented.

Table 5.3: List of the models developed per task.

Task Type Validation Activation Library

Face Recognition MyCNN Hold-out Softmax TF 1.14.0

Face Recognition MyCNN k-Fold Softmax TF 1.14.0

Gender Classification MyCNN k-Fold Softmax TF 1.14.0

Gender Classification MyCNN k-Fold Sigmoid TF 1.14.0

Emotion Detection MyCNN Hold-out Softmax TF 1.14.0

Emotion Detection MyCNN k-Fold Softmax TF 1.14.0

Emotion Detection MyDeepCNN Hold-out Softmax Keras 2.2.4

As the facial recognition task was a multi-class problem, which in theory
was directly solvable by the shallow MyCNN network, we decided use it and
experiment on its validation methodology, to see if either type would pro-
duce tangible differences on our data.

The gender classification problem was a binary classification problem, which
is why we used the opportunity to experiment with the activation layer and
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see if there was a substantial difference in the accuracies of a softmax or
sigmoid-activated approaches to the models. To this end, we kept the same
validation methodology as we did not want any other factor to interfere in
our experiment and its subsequent analysis.

Finally, the emotion detection task was deemed to be significantly more
challenging and complex, which is why we decided to try both the shallow
and the deep MyDeepCNN network on it, to analyse how well model complex-
ity correlates with the apparent difficulty of a problem. We also wanted
to observe if the advanced machine learning techniques such as dropouts,
batch-normalisation, and l2 regularisation would considerably change the
final overall accuracy. The shallow network was evaluated on both valida-
tion methodologies, but only with a softmax activation function as it was a
non-binary, multi-class problem.

In the next chapter, we train the models shown in Table 5.3, and at-
tempt to gain insights into the individual problems of the various models,
by analysing the results and metric evaluations.
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Chapter 6

Results and Analysis

This chapter presents the hyper-parameters chosen for each model, as well
as, the results of the training, including evaluation metrics scores and the
corresponding plots.

6.1 Face Recognition

6.1.1 Hold-out Model

Table 6.1: Hyper-parameters choices.

Hyper-parameter Value

Network MyCNN

Validation type Hold-out
Number of epochs 50
Learning Rate 1× 10−5

Batch size 30
Final activation function Softmax
Random seed 0

The hyper-parameters chosen for the hold-out model in order to solve the
facial recognition task are given in Table 6.1. These were the optimal values
found after manual tuning, and which helped produce the excellent learning
curves shown in Figure 6.1.

One can see that both, the given accuracy and loss graphs, correspond very
closely to the conceptual graph in Figure 5.5, previously shown in chapter 5.
Fifty epochs were sufficient for the model to train well without over-fitting
or losing the ability to generalise over new data.



60 Chapter 6. Results and Analysis

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
Rolling Accuracy Average

0 10 20 30 40 50

0.2

0.4

0.6

0.8
Loss

0 10 20 30 40 50
0.2

0.4

0.6

0.8
Rolling Loss Average

Average Train Loss
Average Validation Loss

Metrics

Figure 6.1: Training loss and accuracy evolution.

Furthermore, as seen in the confusion matrices given in Figure 6.2, the
model performs well not only on the training and validation dataset, but
is also able to fit unseen data remarkably well. Indeed, the overall testing
dataset accuracy was 95.1%.
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Figure 6.2: Confusion matrices for all three datasets.

Using the true and false positive rates calculated from the confusion matri-
ces, we can plot the ROC curves for each class. Figure 6.3 gives the testing
ROC curves, along with its rounded-off AUC values. The corresponding
training ROC curves can also be seen in Figure B.1. We can observe that
all classes perform well, with the ‘Myself’ class slightly out-performing all
the others.
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Figure 6.3: Testing dataset ROC curves per class.

Additional numerical metrics are given in Table C.1, C.2, and C.3, which
include the precision, recall, and in particular, the F1-scores of each class
for the training, validation, and testing dataset. In this case, they actually
serve as a better benchmark criteria and reference against one another than
the AUC values, as these were much more homogeneous.

6.1.2 K-fold Model

When training with the k-fold validation methodology, the hyper-parameters
did not require to be changed from the hold-out model at all, except for the
final activation function, as shown in Table A.2. We can observe that the
learning curves shown in Figure 6.4 are somewhat similar to the hold-out
model. In particular, the validation set’s accuracy and loss both have higher
variance.
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Figure 6.4: Training loss and accuracy evolution.
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The confusion matrices given in Figure 6.5 are also similar to the hold-out
model, with both achieving >94% accuracy. The overall testing accuracy
for this model is 94.5%.
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Figure 6.5: Confusion matrices for all three datasets.

The ROC curves given in Figure 6.6, and their corresponding AUCs are
nearly identical to the hold-out set methodology, with the ‘Myself’ class
again performing slightly better than the rest in the testing dataset. The
remaining numerical metrics are given in Table C.4, C.5, and C.6.
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Figure 6.6: Testing dataset ROC curves per class.

6.1.3 Comparing Models

We can compare both models by evaluating two conclusive metrics given
previously, namely the F1-score or the Area Under the Curve (AUC). To
this end, we plot separate ROC curves for each class by methodology type,
as shown in Figure 6.7. We can observe that the AUCs are nearly identi-
cal for all classes, except for the macro average. Table 6.2 shows that the
hold-out method has a slightly higher average F1-score over all the classes.

We can thus conclude that this task was successfully solved using our own
dataset, with two different methodologies. These do not result in significant
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differences with the chosen hyper-parameters and are able to generalise very
well on unseen testing data, averaging an accuracy of approximately 95%.
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Figure 6.7: ROC curves and their respective AUCs com-
paring hold-out and k-fold cross validation methodology for

each class.

Table 6.2: F1 scores per validation methodology.

Hold-out k-Fold

Myself 0.96 0.97
Sister 0.95 0.93
Mother 0.94 0.94
Father 0.95 0.93
Average 0.95 0.94

6.2 Gender Classification

For the gender classification task, we train both models with k-fold cross
validation. Then, we experiment with the final activation layer, alternating
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between a softmax and a sigmoid function. The following sections give the
results for these two models and compares their metrics.

6.2.1 Softmax Model

The learning rate and other hyper-parameters, given in Table A.3, remain
the same as the previous facial recognition task.

We can observe that the learning curves shown in Figure 6.8 is similar to
the k-fold cross validation model for the facial recognition task, with a high
variance on the validation dataset for both loss and accuracy. Nonetheless,
the model converges at a final testing accuracy of 97.0%.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
Rolling Accuracy Average

0 10 20 30 40 50
0.0

0.1

0.2

0.3

Loss

0 10 20 30 40 50

0.10

0.15

0.20

0.25

0.30

0.35
Rolling Loss Average

Average Train Loss
Average Validation Loss

Metrics

Figure 6.8: Accuracy and loss learning curves.

As expected from such a result, the confusion matrices shown in Figure 6.9
reflect similar high scores for all the datasets, with a slightly higher Type I
error on the testing dataset.
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Figure 6.9: Confusion matrices for all three datasets.

We can use the true and false positive rates to plot the ROC curves for each
class, and their corresponding Area Under the Curves for the training and
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testing datasets. The ‘Male’ class seems to outperform the ‘Female’ class in
this criteria by a negligible margin - both have very high scores at >99%.
On the other hand, we can observe in Table C.9 that ‘Female’ outperforms
the other class in F1-scores, again by a small margin. The corresponding
train and validation score tables are given in Table C.7 and Table C.8.
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Figure 6.10: Testing dataset ROC curves per class.

6.2.2 Sigmoid Model

We change the final activation function to sigmoid but leave all the remain-
ing hyper-parameters as before. The learning curves and confusion matrices
are nearly identical to the softmax model, shown in Figure 6.11 and Fig-
ure 6.12. The training and testing dataset ROC curves are again given in
Figure B.7 and Figure 6.13, and additional numerical metrics can be seen
in Table C.10, Table C.11, and Table C.12.
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Figure 6.11: Training loss and accuracy evolution.
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Figure 6.12: Confusion matrices for all three datasets.
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Figure 6.13: Testing dataset ROC curves per class.

6.2.3 Compare Models

We evaluate the two models by again comparing their ROC curves by plot-
ting per class but with both models. We can observe in Figure 6.14, that
the softmax models slightly outperform the sigmoid model for both classes,
which also naturally reflects in the micro and macro-average. When com-
paring their F1-scores as in Table 6.3, we can observe that they average out
exactly to the same value.

We thus conclude this task to be very successful, as it yields the highest
overall scores of all tasks, with either activation function.

Table 6.3: F1 scores of each model.

Softmax Sigmoid

Male 0.97 0.97
Female 0.98 0.98
Average 0.98 0.98
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Figure 6.14: ROC curves and their respective AUCs com-
paring sigmoid and softmax models for each class.

6.3 Emotion Detection

Finally, for the last task, we implement three different models: two shallow
MyCNN networks, with k-fold cross validation and hold-out set methodology;
and one with deep MyDeepCNN. The sections below summarise the interesting
results for this task.

6.3.1 Hold-out Model

The first implemented model to solve the emotion detection task used a
hold-out set validation methodology, softmax activation function, and a
learning rate smaller than the previous models, as given in Table A.5. Al-
though the remaining hyper-parameters were the same as the previous mod-
els, the learning accuracy and loss curves during training were not optimal
at all. Indeed, as observed by the loss graph in Figure 6.15, the model
clearly over-fits, as shown by the conceptual graph given in Figure 5.5. The
loss clearly goes beyond the ‘optimal point’, which in this case, actually
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does not even ever appear. The validation accuracy stagnates at around
only 40%. The final testing dataset’s accuracy was also only 47.7%.
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Figure 6.15: Training loss and accuracy evolution.

The training dataset’s confusion matrix yields good results, but does very
poorly on the validation and test sets, which confirms the model’s inability
to generalise over new data. Indeed, it confirms that the model over-fitted
and memorised the training dataset.
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Figure 6.16: Confusion matrices for all three datasets.

This is further reflected in the class ROC curves, which are close to the
ideal (0,1) spot in the training dataset, but do not even fit in the same
axes scale for the testing dataset, as shown in Figure B.9 and Figure 6.17
respectively. Furthermore, the Areas Under the Curve macro-average is only
at 77.95% for the testing set, by far the lowest score for any model over
all tasks combined. Additional numeric metrics can be seen in Table C.13,
Table C.14, and Table C.15.
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Figure 6.17: Testing dataset ROC curves per class. The
zoomed-in version on the right-hand side did not even fit

in the given scales of the axes.

6.3.2 K-Fold Model

The k-fold cross validation model only changes the validation type as the
hyper-parameter, with the rest remaining the same as the hold-out model.
The learning curves shown in Figure 6.18 are quite different from all the
previous models, as this does not seem to converge in the given epochs. The
validation dataset accuracy and loss have a high variance as expected, but
neither curves level out during training.
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Figure 6.18: Accuracy and loss learning curves.

When observing the confusion matrices, shown in Figure 6.19, we can ob-
serve an interesting phenomenon: the model, this time, performs signifi-
cantly better at the validation dataset, but still fails to have good overall
results on the testing dataset. A deeper analysis suggests that the model is
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in fact no better than the hold-out model, and that the validation confusion
matrix further demonstrates that this model (along with the previous one)
over-fits.

Indeed, since the model tends to memorise the training dataset when over-
fitting, and because the validation dataset in the k-fold cross validation
methodology takes alternating group samples from the training dataset it-
self, it is very likely that the model simply learnt to memorise over those
samples in question as well. These were not withheld from the model from
the start as in the hold-out model, and thus provide a definitive reason as to
why the confusion matrix gives good results for both the training and vali-
dation dataset, but severely under-performs when working with the testing
dataset.
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Figure 6.19: Confusion matrices for all three datasets.

We can observe the macro-average for the testing dataset’s AUC is again
at only 77.20%, nearly identical as for the hold-out model. Therefore we
chose to further experiment on this problem with a deeper model to see if
it manages to converge.
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Figure 6.20: Testing dataset ROC curves per class.
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6.3.3 Deep Network Model

The deep model has slightly more nuanced hyper-parameters, given in de-
tail in Table 6.4. It uses a hold-out validation methodology, and a learning
decaying specified by the two beta1 and beta2 parameter values. Further-
more, a training batch size of 32 is also chosen.

Table 6.4: Deep Network Model

Hyper-parameter Value

Network MyDeepCNN

Validation type Hold-out
Number of epochs 50
Learning Rate 1× 10−6

Batch size 32
Final activation function Softmax
Random seed 0

Beta 1 1× 10−6

Beta 2 1× 10−6

Epsilon 1× 10−6

Number of features 32

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
Rolling Accuracy Average

0 10 20 30 40 50
0.75

1.00

1.25

1.50

1.75

2.00
Loss

0 10 20 30 40 50

1.2

1.4

1.6

1.8

2.0
Rolling Loss Average

Average Train Loss
Average Validation Loss

Metrics

Figure 6.21: Deep network’s learning curves.

We can see from this model’s learning curves, shown in Figure 6.21, that
the model successfully converges. The loss and accuracy both even out, the
latter at approximately 60%, confirmed by the overall final testing accuracy
of 62.5%. Although this value is lower than any of the previous (working)
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models, it is still a substantive result considering the highest obtained ac-
curacy for the FER2013 dataset is only 71%.

We can indeed confirm the model’s ability to generalise over unseen data,
by the testing dataset’s confusion matrix, shown in Figure 6.22. It is finally
able to successfully produce good performance, and does not differ from the
validation set’s matrix, unlike the previous model.
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Figure 6.22: Deep network’s confusion matrices.

The testing ROC curves are correspondingly better, with a macro-average
of 88.45%, a substantial increase over the previous two shallow models.
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Figure 6.23: Testing dataset ROC curves per class.

Further numeric metrics can be seen in the tables given in Table C.19,
Table C.20, and Table C.21.

6.3.4 Compare Models

We can now compare all three models based on the Area Under the Curve
and F1-scores. We can see an improvement in all AUC scores when switch-
ing from the shallow models to the deeper model. The final macro average
of the deep model is 88%.
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When comparing the F1-scores, we can clearly see the hold-out and k-
fold cross validation models average at the same score of 0.43 and 0.42
respectively, however the deep network is significantly better at 0.58.

Table 6.5: AUCs and F1-scores of all models.

AUC F1-Score

Hold-out k-Fold Deep Hold-out k-Fold Deep

Angry 0.73 0.73 0.85 0.36 0.37 0.51
Disgust 0.77 0.80 0.91 0.19 0.36 0.45
Fear 0.70 0.66 0.81 0.35 0.27 0.41
Happy 0.88 0.86 0.95 0.68 0.65 0.84
Sad 0.71 0.69 0.85 0.35 0.34 0.50
Surprise 0.89 0.90 0.96 0.66 0.59 0.78
Neutral 0.77 0.76 0.86 0.43 0.38 0.59

Micro avg 0.82 0.80 0.91 - - -
Macro avg 0.78 0.77 0.88 - - -
Average 0.78 0.78 0.88 0.43 0.42 0.58

With the deep model’s results, we can finally conclude to have solved the
‘emotion detection’ problem ; and even though the final testing accuracy is
not in the same league as for the ‘face recognition’ and ‘gender classification’
problems, it is important to recall and remind ourselves of the very complex
nature of this particular task.

6.4 Conclusion

In this chapter we summarised the successful implementation of multiple
models with different hyper-parameters and validation methodologies for
each task, with results ranging from reasonable to excellent.

We have shown that in the context of facial recognition tasks, the hold-
out and k-fold cross validation methodologies do not result in significantly
different results, as per our evaluation metrics. Indeed, the former method-
ology interestingly gives the validation learning curve a higher variance, but
does not substantially differ in F1-scores or Area Under the Curve values.

We have also solved the gender classification task using two different ac-
tivation functions, both of which perform exceptionally well in all metrics,
and do not significantly diverge from one another to be conclusive in rela-
tion to the two approaches used.
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The emotion classification task yields the most interesting results for analy-
sis. Unlike the previous two tasks, which were solved with shallow networks,
this problem proved to be solvable only by using a much deeper network.
Indeed, both the shallow hold-out and k-fold cross validation models tended
to over-fit the data, and in fact did not converge on the testing data at all,
as clearly seen on the corresponding confusion matrices and ROC curves.

The deep network model, however, proved to be robust enough to converge
to a reasonable accuracy, which was significantly higher than the other two
models. The reason for its success can be confidently attributed to the
higher number of layers, as well as, the other relatively novel deep learning
techniques that were used, such as batch-normalisation and dropout units,
which seem to be necessary for solving problems of considerably higher level
of complexity.

Based on the above evidence and learning, in the next chapter 7, we discuss
the end-to-end model where we attempted to combine all three tasks to
work seamlessly together as a single unified model.
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Chapter 7

End-to-End Model

The results obtained from the individual models were very satisfactory, with
each model achieving a high level of performance, as demonstrated through
various performance metrics. However, our goal was to ultimately have all
of them work together seamlessly in a combined end-to-end model. This
meant taking in any image as input and being able to directly perform all
three tasks - facial recognition, gender classification, and emotion detection
- within a unified model. To that end, we built a final Python script which
could use the trained and frozen weights of all trained models and run them
for testing on completely unseen data. The following sections summarise
the process which went into building this script.

7.1 Engineering

As all the models had been fully trained, and then further optimised with
hyper-parameter tuning, we did not want to further update the weights.
We loaded the saved weights, checkpoint executable files for TensorFlow,
and .h5 files for Keras, from the correct directory into our script, as shown
in Listing 7.1. This creates all the necessary variables such as tf.Session
and saver, by loading the saved graph and restoring the latest checkpoint.
This also allows us to retrieve the last layer’s output softmax tensor by their
saved name, e.g. CNN/Softmax:0.

1 de f restore_model ( graph , graph_dir , checkpoint_dir ) :
2 ’ ’ ’ Import t f graph and r e s t o r e model v a r i a b l e s ’ ’ ’
3 with graph . as_defau l t ( ) :
4

5 # Load graph and r e s t o r e t f v a r i a b l e s
6 saver = t f . t r a i n . import_meta_graph ( graph_dir )
7 l a t e s t_checkpo int = t f . t r a i n . l a t e s t_checkpo int (

checkpoint_dir )
8 s e s s = t f . S e s s i on ( graph=graph )
9 saver . r e s t o r e ( s e s s , l a t e s t_checkpo in t )

10

11 # Get r e l e van t t en s o r s
12 tf_cnn_softmax=graph . get_tensor_by_name ( ’CNN/Softmax : 0 ’ )
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13 t f_p laceho lde r=graph . get_tensor_by_name ( ’ P laceho lde r : 0 ’ )
14

15 re turn se s s , tf_cnn_softmax , t f_p laceho lde r

Listing 7.1: Restore trained weights.

The input data then needed to be pre-processed in exactly the same way as
during training, i.e. with the help of histogram equalisation, standardisa-
tion, re-sizing, etc. OpenCV was again used to detect the faces on the image
using Haar’s Cascade.

The difficulty in this model was in correctly initialising all TensorFlow vari-
ables, sometimes multiple ones for each task. Once these were correctly set
up, and the two tensors - tf_cnn_softmax and tf_placeholder - obtained,
we could easily run inference with the sess.run() or model.predict()

method, as shown in Listing 7.2.

1 de f run_model ( s e s s , t f_placeho lder , tf_cnn_softmax , x_test ) :
2 ’ ’ ’Run model ’ ’ ’
3 probs = s e s s . run ( tf_cnn_softmax , feed_dict={t f_p laceho lde r :

x_test })
4 y_hat = np . argmax ( probs , ax i s =1)
5 re turn probs , y_hat

Listing 7.2: Run inference on restored weights.

This process returns the probabilities and prediction classes for the input
testing data, which we can then use to present the results directly on the
images. Since this script mixed all three tasks together, it was important
to be able to convey a lot of visual information at once, and not unneces-
sarily overcrowd images with text giving the prediction names. Therefore,
we decided to convey the results of each task in a different way.

For example, the gender classification predictions were given through dif-
ferent shapes around the face in question - rectangles for males and circles
for females. The facial recognition task was conveyed through the colour
of the shape, with each colour corresponding to the core variable defined in
chapter 4, e.g. orange for ‘Myself’, green for ‘Sister’, red for ‘Mother’, and
blue for ‘Father’.

Finally, emotion was displayed through text on the top left-hand corner of
side respectively, of the rectangle or circle circumscribing the faces. We also
decided to include the corresponding probability of the emotion, as this was
a complex task with some level of uncertainty. All of these mark-up tasks
were easily achieved with OpenCV’s methods, such as cv2.rectangle(),
cv2.circle(), and cv2.putText().
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7.2 Results

The results of the end-to-end model can be seen on a few sample images
below. These are images the model had never seen before - not even in the
training dataset.

Myself Sister Mother Father

Figure 7.1: Inference on sample image.

Myself Sister Mother Father

Figure 7.2: Model correctly predicts all recognition and
gender classes, communicated through the squares for

males and circles for females.

We can observe that all three tasks were accomplished seamlessly, and the
predictions correspond well to the tangible ground truth (gender classifica-
tion and facial recognition). The emotions given in the sample images are
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homogeneous, but the predicted emotion corresponds well to the emotions
present in the pictures.

Myself Sister Mother Father

Figure 7.3: Inference on sample image.

Myself Sister Mother Father

Figure 7.4: Facial recognition model correctly predicts
class despite beard and occulted hair.

In the next chapter 8, we discuss how the real-time model was implemented,
and go over its results.



79

Chapter 8

Real-Time Model

To challenge and push this project to demonstrate its full potential and
maximise our rewards, an attempt was made to implement another model
which could run our end-to-end model on a real-time input feed, such as
from a web-cam or a phone camera. This could shift our project from an
academic exercise and perspective into the forefront of practical applica-
tions.

This prospect had a lot of uncertainty as the actual practicalities of having
a deep learning model work on multiple frames per second was completely
unknown. But on the upside, the realisation of such a model would be
very well-suited for demonstrations. The following sections summarise the
process that went into building this script.

8.1 Engineering

In many ways, the implementation of this model was very similar to our
‘passive’ end-to-end model, as the variables and weights were all loaded and
restored in the same way as Listing 7.1, as shown below in Listing 8.1.

1 # Restore a l l models
2 reco_values = mm. restore_model ( . . . )
3 model_fer = recreate_keras_model ( . . . )
4 gender_values = mm. restore_model ( . . . )

Listing 8.1: Restoring the saved models weights.

The web-cam feed could be easy captured with OpenCV’s VideoCapture()
method. It is to be noted that the use of this method often requires ad-
ministrative permissions, and a direct execution of the script on a new
machine may not directly give the expected results. Furthermore, the
VideoCapture() has a channel feed parameter, which can be 0, 1, or any
other integer, depending on the number of output video sources attached
to the machine running the script.
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The main structure of this script consists of a while loop which runs and
captures frames until explicitly told to stop. Each frame is then converted
from BGR to RGB, and the region of interests, i.e. the faces detected by
OpenCV are copied onto a new array, which is then pre-processed, before
being used for inference of all the tasks.

The pre-processing is the same as the previous models, which includes his-
togram equalisation, image standardisation and resizing, all of which are
accessed through the MyUtilityMethods class. The program can be shut
at any time by breaking the while loop, which can be done by pressing the
Q key on the user’s keyboard. The code given in Listing 8.2 represents the
overall skeleton code of the implemented script.

1 frames = [ ]
2 # Run camera
3 whi le (True ) :
4 # Capture frame−by−frame
5 ret , frame = cap . read ( )
6

7 # Our ope ra t i on s on the frame come here
8 rgb_frame = cv2 . cvtColor ( frame , cv2 .COLOR_BGR2RGB)
9 frames . append ( rgb_frame )

10

11 # Copy image
12 image_copy = rgb_frame . copy ( )
13

14 # Get heads , p l o t r e c t an g l e s
15 . . .
16

17 # In f e r en c e
18 probs_reco , y_hat_reco = mm. run_model ( . . . )
19 probs_fer , y_hat_fer = mm. run_keras_model ( . . . )
20 probs_gender , y_hat_gender = mm. run_model ( . . . )
21

22 # Mark−up
23 cv2 . putText ( . . . )
24

25 # Display the r e s u l t i n g frame
26 cv2 . imshow ( ’ frame ’ , frame )
27

28 # Release keys
29 i f cv2 . waitKey (1 ) & 0xFF == ord ( ’ q ’ ) :
30 break
31

32 # When everyth ing i s done , r e l e a s e the capture
33 cap . r e l e a s e ( )
34 cv2 . destroyAllWindows ( )

Listing 8.2: Overall structure of script.
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8.2 Results

The result was surprisingly robust and legitimate for a prototype imple-
mentation. There is indeed little lag, and the model is successfully able to
deliver real-time inference of given faces without any major issues. There
are other factors which influence the quality of the predictions, such as the
lighting conditions, pose, occlusion etc., but these are no different than those
in static images. The model is also able to flawlessly perform continuous
inference on multiple faces simultaneously.

The results can be seen in the images given below in Figure 8.1, which
are best observed by directly running the script, following the instructions
given in the user manual in Appendix E.

Alternatively, a sample demonstration video can be viewed at https://

youtu.be/y4KUKlOh9hs. The legend is identical to the end-to-end model,
given through the shapes, colours, and annotated text around the area cir-
cumscribing the detected faces.

Figure 8.1: Sample screen-shots taken when running the
real-time model. The predicted emotions and their cor-
responding probabilities are given in green on the top-left
corner of each square. These include the fear, sad, happy,

and surprise classes.

In the next chapter 9, we look into critically evaluating the results of our
entire project in relation to the goals stated at the start of this thesis, as
well as how the models could be further improved in the future.

https://youtu.be/y4KUKlOh9hs
https://youtu.be/y4KUKlOh9hs
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Chapter 9

Evaluation

To critically assess this project as a whole, one must evaluate it against
the goals set out in the project proposal. This chapter attempts to provide
an objective evaluation of the project outcomes by comparing the results
achieved in relation to the stated goals. Possible future pathways for the
project, and the overall learning points are also described subsequently.

9.1 Critical Evaluation

The two lists given in section 1.2 presented the features as planned in the
initial proposal and project introduction. We can observe that we have suc-
cessfully achieved all of the planned goals, and in fact gone even further,
with the implementation of the real-time model.

Specifically, we have achieved the essential goals with the help of OpenCV
and our implemented models based on the MyCNN and MyDeepCNN networks,
facilitated by some hyper-parameter tuning.

The desired features were also achieved through the Python utility scripts
and with the aid of good design and engineering principles, which allowed
for flexibility in all the models. The individual models were also success-
fully linked into a single pipeline in the end-to-end model, which was able
to produce the before-and-after photographs.

9.2 Personal Evaluation

9.2.1 Strengths

The strength of the project lies in its originality, ambition, clarity of vision,
experimentations, and technical implementation - all of which are built
on a robust theoretical understanding of Deep Learning principles and a
comprehensive literature review of contemporary techniques and method-
ologies. Furthermore, the project work demonstrated how various problems
were approached from a scientific perspective, meticulously solved, and then
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persistently optimised, based on sound design principles. The project also
did a stellar job of systematically building on comprehension, allowing for
only incremental increases in complexity, and avoided having to deal with
any major bugs.

The project was essentially a multi-dimensional applied data science project,
clearly showcasing the strengths and limitations of various deep-learning
techniques, and how they can be used to create a substantive product which
was potentially capable of improving one’s quality of life. It also demon-
strated the rigour required to join-up all the various components and make
them work together seamlessly. The source code reflects the depth of the
experimentation and analysis done for each implemented model, as well as,
the many utility methods developed to generate comprehensive metric tools.

This project was also very relevant to current events and context, and per-
fectly timed as a demonstration of the power of deep learning, and how
facial information can be extracted from subjects in a non-invasive way,
with or without their consent.

9.2.2 Weaknesses

The weakness in this project is perhaps in its inability to come up with its
own novel algorithm or method unique to the problem. Although, all the
tasks were solved, and any encountered obstacle was eventually surmounted,
it was done through experimentation and analysis based on existing or state-
of-the-art techniques, rather than through a new or innovative twist to
an existing idea. While the project worked well as a very comprehensive
review and application of learnt methods it does not come up with a new
or significant technique in itself.

9.3 Future Work

Despite the work done so far, there is still scope for additional experiments
to be conducted, as well as, new features to be developed which could fur-
ther improve the current implementation. The following paragraphs give an
insight on such aspects and which could yield even better results for each
of the three tasks, and beyond.

The facial recognition task currently works well with model-validation type
models. However, presently it is restricted to the classes we include in the
training dataset, all of which ideally need to have a minimum quantity of
samples to prevent bias in the model. If one were to add a new person to
the model, it would mean re-training the entire network, and tuning the
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hyper-parameters again. One way to potentially overcome this problem is
to implement a one-shot learning model, which uses a similarity function to
calculate the degree of difference between two given images, and can classify
a class based on a single sample.

A more exhaustive literature survey and review would be required to fully
understand concepts such as Siamese networks, which are well explained by
Koch, Zemel and Salakhutdinov (2017). The concept is used by Facebook in
their exceptional and state-of-the-art application, DeepFace, which has an
accuracy of 97.35%, as suggested by Taigman et al. (2014b). Furthermore,
learning about triplet-loss function would also help to understand other
neural networks, such as Google’s FaceNet, which achieved an accuracy of
99.63%, as cited in Schroff, Kalenichenko and Philbin (2015).

Emotion analysis and classification is a complex task, and has only achieved
a best accuracy of 71% on the FER2013 dataset. However, one could use
the same data augmentation techniques used on our personal data and ap-
ply them to the FER2013 dataset to balance and augment it, and see if it
results in any improvement in overall accuracy, F1-scores, or Area Under
the Curves (AUCs).

Furthermore, it would be very interesting if new emotions could be pro-
duced, by detecting faces which contain a mix of two different emotions,
as shown in Figure 9.1. For example, a softmax model which assigned a
sample face the emotions ‘fear’ and ‘disgust’, could over a certain minimum
threshold consider it as ‘outrage’. This idea is based on the concept that
emotions are all linked, and complex emotions are expressed as a mix other
core emotions. This is similar to colour interactions, where new colours can
be created by simply mixing the primary colours in various innumerable
proportions and combinations.

Alternatively, one could potentially create a dataset of emotions by us-
ing the real-time model to record such emotions by means of a video, and
then using individual frames as training input.

Additional ideas to further ‘extract’ more features from faces could include
detecting the ethnicity of a given person, which would again require a la-
belled dataset.

In relation to the models currently implemented, they could be further
tweaked using a grid or random search. Google very recently released a
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Keras Tuner API which gives users access to such a functionality1. Their
latest addition includes a Bayesian tuner, written specifically for tf.keras
with TensorFlow 2.0, currently still a beta version2.

Finally, one could also implement the real-time model on a website us-
ing tf.js3 which would allow one to more easily share the model. One
could additionally add toggling functionalities to it, which would allow a
user to turn each task, such as gender classification, on or off, in order to
play around with the models. This would be significantly more user-friendly
than working on the command-line, and could be the perfect way to show-
case the work done for this project for a wider audience.

In the next chapter 10, we elaborate on the main learning points of this
entire project and the insights gained from it.

1Cutting Edge TensorFlow - Keras Tuner: Hyper-tuning
for Humans. Google I/O 2019. https://elie.net/talk/
cutting-edge-tensorflow-keras-tuner-hypertuning-for-humans. (Accessed on
09/03/2019).

2Keras tuner: Hyper-parameter tuning for humans. https://github.com/
keras-team/keras-tuner. (Accessed on 09/03/2019)

3TensorFlow for JavaScript. https://www.tensorflow.org/js. (Accessed on
09/03/2019).

https://elie.net/talk/cutting-edge-tensorflow-keras-tuner-hypertuning-for-humans
https://elie.net/talk/cutting-edge-tensorflow-keras-tuner-hypertuning-for-humans
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://www.tensorflow.org/js
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Figure 9.1: Mixing emotions to create new ones, from the
perspective of an artist. Source: McCloud (2006).
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Chapter 10

Learning Points

This project was truly multi-dimensional and technical, which developed
and enriched one’s skills in several ways. This chapter provides an insight
into the main learning points from this project.

From a big picture perspective, the project was first and foremost an ed-
ucation in neural networks, without which one would not have felt truly
comfortable with deep learning libraries such as TensorFlow or Keras. Com-
pelled to comprehend abstract concepts and technical nuances, avoid com-
mon mistakes, and rigorously understand the data and technologies, one
now feels truly empowered to work on new deep learning problems, and
further expand one’s breadth of technical capacities and potential.

From a more grounded and technical point of view, this project helped
realise and appreciate the value and utility of vectorisation, a process which
saved an incalculable amount of time at every stage of this large project.
Moreover, one gained a more mathematical understanding of how a model’s
variables and hyper-parameters explicitly interact with convolutional neural
networks.

One also truly appreciated the merit of non-technical skills. Indeed, the
value of having a clear vision from the very outset became quickly appar-
ent. Furthermore, one realised the critical importance of clearly defining
the problem, as well as bounding the project’s scope and setting tangi-
ble goals. This also positively impacted one’s time-management abilities,
and highlighted the importance of a strict schedule in order to maintain a
productive workflow. Finally, the value of exercising caution, building on
comprehension, and increasing complexity only incrementally, were perhaps
the main factors in the success of this project. Indeed, breaking down the
overall problem into three smaller ones, and solving and tweaking each of
them was the reason one was able to then put them back together, and in a
more complex yet sophisticated way. This resulted in the final end-to-end
and real-time models which were the true highlights of this project.



90 Chapter 10. Learning Points

Finally, learning about facial recognition and related technologies also gave
one a deeper insight into its power and potentially harmful impact on soci-
ety. One remarkable outcome of this project is that one is now truly driven
to grapple with the cutting-edge of artificial intelligence, especially in the
field of computer vision, to the point where one has been engaging with lat-
est developments and publications on a daily basis. One is truly amazed at
the potential of artificial intelligence, and ready to apply learnt theoretical
knowledge and practical experience to real-world projects, in order to har-
ness its power, and play one’s part in positively shaping the AI-dominated
world of tomorrow.
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Appendix A

Hyper-parameters

A.1 Facial Recognition

Table A.1: Hold-out Model

Hyper-parameter Value

Network MyCNN

Validation type Hold-out
Number of epochs 50
Learning Rate 1× 10−5

Batch size 30
Final activation function Softmax
Random seed 0

Table A.2: K-fold Model

Hyper-parameter Value

Network MyCNN

Validation type k-fold
Number of epochs 50
Learning Rate 1× 10−5

Batch size 30
Final activation function Softmax
Random seed 0
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A.2 Gender Classification

Table A.3: Softmax Model

Hyper-parameter Value

Network MyCNN

Validation type k-fold
Number of epochs 50
Learning Rate 1× 10−5

Batch size 30
Final activation function Softmax
Random seed 0

Table A.4: Sigmoid Model

Hyper-parameter Value

Network MyCNN

Validation type k-fold
Number of epochs 50
Learning Rate 1× 10−5

Batch size 30
Final activation function Sigmoid
Random seed 0

A.3 Emotion Classification

Table A.5: Hold-out Model

Hyper-parameter Value

Network MyCNN

Validation type Hold-out
Number of epochs 50
Learning Rate 1× 10−6

Batch size 30
Final activation function Softmax
Random seed 0
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Table A.6: K-Fold Model

Hyper-parameter Value

Network MyCNN

Validation type k-fold
Number of epochs 50
Learning Rate 1× 10−6

Batch size 30
Final activation function Softmax
Random seed 0

Table A.7: Deep Network Model

Hyper-parameter Value

Network MyDeepCNN

Validation type Hold-out
Number of epochs 50
Learning Rate 1× 10−6

Batch size 32
Final activation function Softmax
Random seed 0

Beta 1 1× 10−6

Beta 2 1× 10−6

Epsilon 1× 10−6

Number of features 32
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Appendix B

ROC Curves

B.1 Facial Recognition
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Figure B.1: Hold-out model training ROC curves.
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Figure B.2: Hold-out model testing ROC curves.
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Figure B.3: K-fold model training ROC curves.
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Figure B.4: K-fold model training ROC curves.

B.2 Gender Classification
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Figure B.5: Softmax model training ROC curves.



B.2. Gender Classification 97

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Male (99.30%)
Female (99.29%)
Micro avg (99.33%)
Macro avg (99.36%)
Ideal

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
False Positive Rate

0.90

0.92

0.94

0.96

0.98

1.00

Male (99.30%)
Female (99.29%)
Micro avg (99.33%)
Macro avg (99.36%)
Ideal

Figure B.6: Softmax model testing ROC curves.
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Figure B.7: Sigmoid model training ROC curves.
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Figure B.8: Sigmoid model testing ROC curves.
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B.3 Emotion Detection
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Figure B.9: Hold-out model training ROC curves.
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Figure B.10: Hold-out model testing ROC curves.
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Figure B.11: K-fold model training ROC curves.
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Figure B.12: K-fold model testing ROC curves.
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Figure B.13: Deep model training ROC curves.
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Figure B.14: Deep model testing ROC curves.
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Appendix C

Metric Tables

C.1 Facial Recognition

C.1.1 Hold-out Model

Table C.1: Training metrics per class.

f1-score precision recall support

Myself 0.99 0.99 0.99 5469.00
Sister 0.98 0.98 0.98 5772.00
Mother 0.98 0.98 0.98 5318.00
Father 0.98 0.99 0.98 2071.00
accuracy 0.98 0.98 0.98 0.98
macro avg 0.98 0.98 0.98 18630.00
weighted avg 0.98 0.98 0.98 18630.00

Table C.2: Validation metrics per class.

f1-score precision recall support

Myself 0.94 0.95 0.92 659.00
Sister 0.93 0.92 0.93 600.00
Mother 0.93 0.92 0.94 560.00
Father 0.97 0.96 0.97 251.00
accuracy 0.94 0.94 0.94 0.94
macro avg 0.94 0.94 0.94 2070.00
weighted avg 0.94 0.94 0.94 2070.00
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Table C.3: Testing metrics per class.

f1-score precision recall support

Myself 0.96 0.95 0.96 334.00
Sister 0.95 0.96 0.94 322.00
Mother 0.94 0.94 0.95 314.00
Father 0.95 0.96 0.95 122.00
accuracy 0.95 0.95 0.95 0.95
macro avg 0.95 0.95 0.95 1092.00
weighted avg 0.95 0.95 0.95 1092.00

C.1.2 K-fold Model

Table C.4: Training metrics per class.

f1-score precision recall support

Myself 0.98 0.99 0.97 6128.00
Sister 0.97 0.96 0.99 6372.00
Mother 0.97 0.97 0.98 5878.00
Father 0.98 0.99 0.97 2322.00
accuracy 0.98 0.98 0.98 0.98
macro avg 0.98 0.98 0.97 20700.00
weighted avg 0.98 0.98 0.98 20700.00

Table C.5: Validation metrics per class.

f1-score precision recall support

Myself 0.97 0.99 0.95 138.00
Sister 0.96 0.93 0.99 111.00
Mother 0.97 0.97 0.97 120.00
Father 0.99 1.00 0.98 45.00
accuracy 0.97 0.97 0.97 0.97
macro avg 0.97 0.97 0.97 414.00
weighted avg 0.97 0.97 0.97 414.00
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Table C.6: Testing metrics per class.

f1-score precision recall support

Myself 0.97 0.96 0.97 334.00
Sister 0.93 0.92 0.94 322.00
Mother 0.94 0.94 0.94 314.00
Father 0.93 0.96 0.90 122.00
accuracy 0.95 0.95 0.95 0.95
macro avg 0.94 0.95 0.94 1092.00
weighted avg 0.95 0.95 0.95 1092.00

C.2 Gender Classification

C.2.1 Softmax Model

Table C.7: Training metrics per class.

precision recall f1-score support

Male 1.0 0.99 1.0 8450.0
Female 1.0 1.00 1.0 12250.0
accuracy 1.0 1.00 1.0 1.0
macro avg 1.0 1.00 1.0 20700.0
weighted avg 1.0 1.00 1.0 20700.0

Table C.8: Validation metrics per class.

precision recall f1-score support

Male 0.99 0.99 0.99 183.0
Female 1.00 1.00 1.00 231.0
accuracy 1.00 1.00 1.00 1.0
macro avg 1.00 1.00 1.00 414.0
weighted avg 1.00 1.00 1.00 414.0

Table C.9: Testing metrics per class.

precision recall f1-score support

Male 0.98 0.96 0.97 456.00
Female 0.97 0.98 0.98 636.00
accuracy 0.98 0.98 0.98 0.98
macro avg 0.98 0.97 0.97 1092.00
weighted avg 0.98 0.98 0.98 1092.00
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C.2.2 Sigmoid Model

Table C.10: Training metrics per class.

precision recall f1-score support

Male 0.99 0.99 0.99 8450.00
Female 0.99 0.99 0.99 12250.00
accuracy 0.99 0.99 0.99 0.99
macro avg 0.99 0.99 0.99 20700.00
weighted avg 0.99 0.99 0.99 20700.00

Table C.11: Validation metrics per class.

precision recall f1-score support

Male 0.98 0.97 0.98 183.00
Female 0.98 0.99 0.98 231.00
accuracy 0.98 0.98 0.98 0.98
macro avg 0.98 0.98 0.98 414.00
weighted avg 0.98 0.98 0.98 414.00

Table C.12: Testing metrics per class.

precision recall f1-score support

Male 0.97 0.96 0.97 456.00
Female 0.97 0.98 0.98 636.00
accuracy 0.97 0.97 0.97 0.97
macro avg 0.97 0.97 0.97 1092.00
weighted avg 0.97 0.97 0.97 1092.00
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C.3 Emotion Detection

C.3.1 Hold-out Model

Table C.13: Training metrics per class.

f1-score precision recall support

Angry 0.96 0.99 0.93 4226.00
Disgust 0.99 0.99 0.98 457.00
Fear 0.96 0.92 0.99 4373.00
Happy 0.99 0.99 0.99 7677.00
Sad 0.97 0.98 0.96 5212.00
Surprise 0.98 1.00 0.96 3426.00
Neutral 0.98 0.97 0.99 5301.00
accuracy 0.97 0.97 0.97 0.97
macro avg 0.97 0.98 0.97 30672.00
weighted avg 0.97 0.98 0.97 30672.00

Table C.14: Validation metrics per class.

f1-score precision recall support

Angry 0.35 0.39 0.32 466.00
Disgust 0.47 0.56 0.40 62.00
Fear 0.36 0.32 0.41 498.00
Happy 0.65 0.64 0.65 856.00
Sad 0.34 0.36 0.33 560.00
Surprise 0.61 0.66 0.56 371.00
Neutral 0.42 0.40 0.43 596.00
accuracy 0.47 0.47 0.47 0.47
macro avg 0.46 0.48 0.44 3409.00
weighted avg 0.47 0.47 0.47 3409.00
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Table C.15: Testing metrics per class.

f1-score precision recall support

Angry 0.36 0.40 0.32 253.00
Disgust 0.19 0.27 0.14 28.00
Fear 0.35 0.31 0.39 250.00
Happy 0.68 0.69 0.66 455.00
Sad 0.35 0.36 0.35 304.00
Surprise 0.66 0.73 0.61 204.00
Neutral 0.43 0.39 0.47 300.00
accuracy 0.48 0.48 0.48 0.48
macro avg 0.43 0.45 0.42 1794.00
weighted avg 0.48 0.49 0.48 1794.00

C.3.2 K-fold Model

Table C.16: Training metrics per class.

f1-score precision recall support

Angry 0.90 0.93 0.88 4561.00
Disgust 0.95 0.94 0.97 506.00
Fear 0.90 0.90 0.89 4728.00
Happy 0.96 0.94 0.98 8311.00
Sad 0.89 0.84 0.94 5600.00
Surprise 0.95 0.96 0.94 3695.00
Neutral 0.89 0.95 0.85 5749.00
accuracy 0.92 0.92 0.92 0.92
macro avg 0.92 0.92 0.92 33150.00
weighted avg 0.92 0.92 0.92 33150.00
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Table C.17: Validation metrics per class.

f1-score precision recall support

Angry 0.86 0.88 0.84 89.00
Disgust 1.00 1.00 1.00 11.00
Fear 0.85 0.89 0.82 89.00
Happy 0.93 0.89 0.96 169.00
Sad 0.85 0.79 0.93 109.00
Surprise 0.92 0.94 0.90 73.00
Neutral 0.81 0.88 0.75 123.00
accuracy 0.88 0.88 0.88 0.88
macro avg 0.89 0.90 0.89 663.00
weighted avg 0.88 0.88 0.88 663.00

Table C.18: Testing metrics per class.

f1-score precision recall support

Angry 0.37 0.39 0.35 253.00
Disgust 0.36 0.37 0.36 28.00
Fear 0.27 0.28 0.27 250.00
Happy 0.65 0.64 0.66 455.00
Sad 0.34 0.32 0.37 304.00
Surprise 0.59 0.57 0.62 204.00
Neutral 0.38 0.42 0.35 300.00
accuracy 0.45 0.45 0.45 0.45
macro avg 0.42 0.43 0.43 1794.00
weighted avg 0.45 0.45 0.45 1794.00
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C.3.3 Deep Model

Table C.19: Training metrics per class.

f1-score precision recall support

Angry 0.78 0.72 0.85 4441.00
Disgust 0.79 0.74 0.85 489.00
Fear 0.70 0.84 0.61 4608.00
Happy 0.97 0.96 0.97 8095.00
Sad 0.77 0.79 0.76 5458.00
Surprise 0.93 0.95 0.90 3599.00
Neutral 0.85 0.81 0.91 5597.00
accuracy 0.85 0.85 0.85 0.85
macro avg 0.83 0.83 0.84 32287.00
weighted avg 0.84 0.85 0.85 32287.00

Table C.20: Validation metrics per class.

f1-score precision recall support

Angry 0.56 0.48 0.67 251.00
Disgust 0.54 0.55 0.53 30.00
Fear 0.42 0.53 0.35 263.00
Happy 0.84 0.83 0.86 438.00
Sad 0.49 0.53 0.46 314.00
Surprise 0.77 0.83 0.71 198.00
Neutral 0.59 0.55 0.63 300.00
accuracy 0.63 0.63 0.63 0.63
macro avg 0.60 0.61 0.60 1794.00
weighted avg 0.62 0.63 0.63 1794.00



C.3. Emotion Detection 109

Table C.21: Testing metrics per class.

f1-score precision recall support

Angry 0.51 0.45 0.58 253.00
Disgust 0.45 0.41 0.50 28.00
Fear 0.41 0.54 0.34 250.00
Happy 0.84 0.82 0.86 455.00
Sad 0.50 0.54 0.46 304.00
Surprise 0.78 0.82 0.74 204.00
Neutral 0.59 0.54 0.65 300.00
accuracy 0.62 0.62 0.62 0.62
macro avg 0.58 0.59 0.59 1794.00
weighted avg 0.62 0.63 0.62 1794.00
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Appendix D

Source Codes

The sections below give the souce codes for all implemented classes, meth-
ods, and utility scripts. These include the following files:

• myutilitymethods.py

• mycnn.py

• mydeepcnn.py

• RestoreModel.py

• LiveInput.py

• prepare_cropped_faces.py

• convert_images_to_data.py
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2
0
5
 
 
 
 
 
#
 
A
x
i
s

2
0
6
 
 
 
 
 
#
a
x
e
s
[
0
,
0
]
.
s
e
t
_
x
l
a
b
e
l
(
'
I
t
e
r
a
t
i
o
n
s
'
)

2
0
7
 
 
 
 
 
#
a
x
e
s
[
0
,
0
]
.
s
e
t
_
y
l
a
b
e
l
(
'
A
c
c
u
r
a
c
y
'
)

2
0
8
 
 
 
 
 
#
a
x
e
s
[
1
,
0
]
.
s
e
t
_
x
l
a
b
e
l
(
'
L
o
s
s
'
)

2
0
9
 
 
 
 
 
#
a
x
e
s
[
0
,
1
]
.
s
e
t
_
t
i
t
l
e
(
'
R
o
l
l
i
n
g
 
A
c
c
u
r
a
c
y
 
A
v
e
r
a
g
e
'
)

2
1
0
 
 
 
 
 
#
a
x
e
s
[
1
,
1
]
.
s
e
t
_
t
i
t
l
e
(
'
R
o
l
l
i
n
g
 
L
o
s
s
 
A
v
e
r
a
g
e
'
)

2
1
1
 
 
 
 
 
#
 
L
i
m
i
t
s

2
1
2
 
 
 
 
 
a
x
e
s
[
0
,
0
]
.
s
e
t
_
y
l
i
m
(
b
o
t
t
o
m
=
0
.
0
,
 
t
o
p
=
1
)

2
1
3
 
 
 
 
 
a
x
e
s
[
0
,
1
]
.
s
e
t
_
y
l
i
m
(
b
o
t
t
o
m
=
0
.
0
,
 
t
o
p
=
1
)

2
1
4
 
 
 
 
 
#
 
P
l
o
t

2
1
5
 
 
 
 
 if

 
v
a
l
_
a
c
c
u
r
a
c
y
 is

 not
 
N
o
n
e
 and

 
v
a
l
_
l
o
s
s
 is

 not
 
N
o
n
e
:

2
1
6
 
 
 
 
 
 
 
p
l
t
.
l
e
g
e
n
d
(
)

2
1
7
 
 
 
 
 
p
l
t
.
s
h
o
w
(
)

2
1
8
 
 
 

2
1
9
 
 
 

2
2
0
 
 
 def

 
p
l
o
t
_
p
c
a
(
s
e
l
f
,
 
x
_
t
r
a
i
n
,
 
y
_
t
r
a
i
n
,
 
d
p
i
=
1
5
0
,
 
t
i
t
l
e
=
N
o
n
e
)
:

2
2
1
 
 
 
 
 
'
'
'
P
l
o
t
 
P
C
A
 
p
l
o
t
 
o
f
 
t
r
a
i
n
i
n
g
 
s
e
t
'
'
'
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2
2
2
 
 
 
 
 
n
_
t
r
a
i
n
 
=
 
x
_
t
r
a
i
n
.
s
h
a
p
e
[
0
]

2
2
3
 
 
 
 
 
n
b
_
f
e
a
t
u
r
e
s
 
=
 
n
p
.
p
r
o
d
(
x
_
t
r
a
i
n
.
s
h
a
p
e
[
1
:
]
)

2
2
4
 
 
 
 
 
x
_
t
r
a
i
n
 
=
 
x
_
t
r
a
i
n
.
r
e
s
h
a
p
e
(
(
n
_
t
r
a
i
n
,
 
n
b
_
f
e
a
t
u
r
e
s
)
)

2
2
5
 
 
 
 
 
#
 
P
C
A

2
2
6
 
 
 
 
 
p
c
a
 
=
 
P
C
A
(
n
_
c
o
m
p
o
n
e
n
t
s
=
2
)

2
2
7
 
 
 
 
 
x
_
f
i
t
 
=
 
p
c
a
.
f
i
t
_
t
r
a
n
s
f
o
r
m
(
x
_
t
r
a
i
n
)

2
2
8
 
 
 
 
 
#
 
P
l
o
t

2
2
9
 
 
 
 
 
p
l
t
.
f
i
g
u
r
e
(
f
i
g
s
i
z
e
=
(
8
,
5
)
,
 
d
p
i
=
d
p
i
)
 

2
3
0
 
 
 
 
 for

 
n
u
m
 in

 
s
e
t
(
y
_
t
r
a
i
n
)
:

2
3
1
 
 
 
 
 
 
 
#
p
l
t
.
s
c
a
t
t
e
r
(
x
_
f
i
t
[
y
_
t
r
a
i
n
=
=
n
u
m
,
 
0
]
,
 
x
_
f
i
t
[
y
_
t
r
a
i
n
=
=
n
u
m
,
 
1
]
,
 
l
a
b
e
l
=
n
u
m
_
t
o
_
c
l
a
s
s
[
n
u
m
]
,
 
 
 
c
o
l
o
r
=
c
l
a
s
s
_
c
o
l
o
r
s
[
n
u
m
]
,
 
s
=
1
)

2
3
2
 
 
 
 
 
 
 
p
l
t
.
s
c
a
t
t
e
r
(
x
_
f
i
t
[
y
_
t
r
a
i
n
=
=
n
u
m
,
 
0
]
,
 
x
_
f
i
t
[
y
_
t
r
a
i
n
=
=
n
u
m
,
 
1
]
,
 
s
=
1
)

2
3
3
 
 
 
 
 if

 
t
i
t
l
e
:

2
3
4
 
 
 
 
 
 
 
p
l
t
.
t
i
t
l
e
(
t
i
t
l
e
)

2
3
5
 
 
 
 
 
#
p
l
t
.
l
e
g
e
n
d
(
l
o
c
=
2
)

2
3
6
 
 
 
 
 
p
l
t
.
s
h
o
w
(
)

2
3
7
 
 
 

2
3
8
 
 
 def

 
g
e
t
_
f
a
l
s
e
_
c
l
a
s
s
i
f
i
c
a
t
i
o
n
s
(
s
e
l
f
,
 
y
_
r
e
a
l
,
 
a
l
l
_
p
r
e
d
s
)
:

2
3
9
 
 
 
 
 
'
'
'
G
e
t
 
f
a
l
s
e
 
c
l
a
s
s
i
f
i
c
a
t
i
o
n
 
v
a
l
u
e
s
'
'
'

2
4
0
 
 
 
 
 return

 
n
p
.
w
h
e
r
e
(
(
y
_
r
e
a
l
 
=
=
 
a
l
l
_
p
r
e
d
s
)
*
1
 
=
=
 
0
)
[
0
]

2
4
1
 
 
 

2
4
2
 
 
 def

 
p
l
o
t
_
c
o
n
f
u
s
i
o
n
_
m
a
t
r
i
x
(
s
e
l
f
,
 
y
_
t
r
u
e
,
 
y
_
p
r
e
d
,
 
c
l
a
s
s
e
s
,
 
n
o
r
m
a
l
i
z
e
=
F
a
l
s
e
,
 
t
i
t
l
e
=
N
o
n
e
,
 
c
m
a
p
=
'
G
n
B
u
'
,
 
 
 
d
p
i
=
1
0
0
)
:

2
4
3
 
 
 
 
 
'
'
'
P
l
o
t
 
c
o
n
f
u
s
i
o
n
 
m
a
t
r
i
x
 
w
i
t
h
 
y
_
r
e
a
l
,
 
y
_
h
a
t
,
 
a
n
d
 
c
l
a
s
s
e
s
.
'
'
'

2
4
4
 
 
 
 
 if

 not
 
t
i
t
l
e
:

2
4
5
 
 
 
 
 
 
 
 
 if

 
n
o
r
m
a
l
i
z
e
:

2
4
6
 
 
 
 
 
 
 
 
 
 
 
t
i
t
l
e
 
=
 
'
N
o
r
m
a
l
i
z
e
d
 
c
o
n
f
u
s
i
o
n
 
m
a
t
r
i
x
'

2
4
7
 
 
 
 
 
 
 
 
 else

:
2
4
8
 
 
 
 
 
 
 
 
 
 
 
t
i
t
l
e
 
=
 
'
C
o
n
f
u
s
i
o
n
 
m
a
t
r
i
x
,
 
w
i
t
h
o
u
t
 
n
o
r
m
a
l
i
z
a
t
i
o
n
'

2
4
9
 
 
 
 
 
#
 
C
o
m
p
u
t
e
 
c
o
n
f
u
s
i
o
n
 
m
a
t
r
i
x

2
5
0
 
 
 
 
 
c
m
 
=
 
s
k
_
c
m
(
y
_
t
r
u
e
,
 
y
_
p
r
e
d
)

2
5
1
 
 
 
 
 
#
 
O
n
l
y
 
u
s
e
 
t
h
e
 
l
a
b
e
l
s
 
t
h
a
t
 
a
p
p
e
a
r
 
i
n
 
t
h
e
 
d
a
t
a

2
5
2
 
 
 
 
 
c
l
a
s
s
e
s
 
=
 
c
l
a
s
s
e
s
[
u
n
i
q
u
e
_
l
a
b
e
l
s
(
y
_
t
r
u
e
,
 
y
_
p
r
e
d
)
]

2
5
3
 
 
 
 
 if

 
n
o
r
m
a
l
i
z
e
:
 
c
m
 
=
 
c
m
.
a
s
t
y
p
e
(
'
f
l
o
a
t
'
)
 
/
 
c
m
.
s
u
m
(
a
x
i
s
=
1
)
[
:
,
 
n
p
.
n
e
w
a
x
i
s
]

2
5
4
 
 
 
 
 
#
 
S
u
b
p
l
o
t
s

2
5
5
 
 
 
 
 
f
i
g
,
 
a
x
 
=
 
p
l
t
.
s
u
b
p
l
o
t
s
(
d
p
i
=
d
p
i
)

2
5
6
 
 
 
 
 
i
m
 
=
 
a
x
.
i
m
s
h
o
w
(
c
m
,
 
i
n
t
e
r
p
o
l
a
t
i
o
n
=
'
n
e
a
r
e
s
t
'
,
 
c
m
a
p
=
c
m
a
p
)

2
5
7
 
 
 
 
 
a
x
.
f
i
g
u
r
e
.
c
o
l
o
r
b
a
r
(
i
m
,
 
a
x
=
a
x
)

2
5
8
 
 
 
 
 
#
 
L
a
b
e
l

2
5
9
 
 
 
 
 
a
x
.
s
e
t
(
x
t
i
c
k
s
=
n
p
.
a
r
a
n
g
e
(
c
m
.
s
h
a
p
e
[
1
]
)
,

2
6
0
 
 
 
 
 
 
 
 
 
 
 
 
y
t
i
c
k
s
=
n
p
.
a
r
a
n
g
e
(
c
m
.
s
h
a
p
e
[
0
]
)
,

2
6
1
 
 
 
 
 
 
 
 
 
 
 
 
x
t
i
c
k
l
a
b
e
l
s
=
c
l
a
s
s
e
s
,
 

2
6
2
 
 
 
 
 
 
 
 
 
 
 
 
y
t
i
c
k
l
a
b
e
l
s
=
c
l
a
s
s
e
s
,

2
6
3
 
 
 
 
 
 
 
 
 
 
 
 
t
i
t
l
e
=
t
i
t
l
e
,

2
6
4
 
 
 
 
 
 
 
 
 
 
 
 
y
l
a
b
e
l
=
'
T
r
u
e
 
l
a
b
e
l
'
,

2
6
5
 
 
 
 
 
 
 
 
 
 
 
 
x
l
a
b
e
l
=
'
P
r
e
d
i
c
t
e
d
 
l
a
b
e
l
'
)

2
6
6
 
 
 
 
 
#
 
R
o
t
a
t
e
 
t
h
e
 
t
i
c
k
 
l
a
b
e
l
s
 
a
n
d
 
s
e
t
 
t
h
e
i
r
 
a
l
i
g
n
m
e
n
t
.

2
6
7
 
 
 
 
 
p
l
t
.
s
e
t
p
(
a
x
.
g
e
t
_
y
t
i
c
k
l
a
b
e
l
s
(
)
,
 
r
o
t
a
t
i
o
n
=
9
0
,
 
h
a
=
"
r
i
g
h
t
"
,
 
r
o
t
a
t
i
o
n
_
m
o
d
e
=
"
a
n
c
h
o
r
"
)

2
6
8
 
 
 
 
 
#
 
L
o
o
p
 
o
v
e
r
 
d
a
t
a
 
d
i
m
e
n
s
i
o
n
s
 
a
n
d
 
c
r
e
a
t
e
 
t
e
x
t
 
a
n
n
o
t
a
t
i
o
n
s
.

2
6
9
 
 
 
 
 
f
m
t
 
=
 
'
.
2
f
'
 if

 
n
o
r
m
a
l
i
z
e
 else

 
'
d
'

2
7
0
 
 
 
 
 
t
h
r
e
s
h
 
=
 
c
m
.
m
a
x
(
)
 
/
 
2
.

2
7
1
 
 
 
 
 
#
 
L
o
o
p

2
7
2
 
 
 
 
 for

 
i
 in

 
r
a
n
g
e
(
c
m
.
s
h
a
p
e
[
0
]
)
:

2
7
3
 
 
 
 
 
 
 for

 
j
 in

 
r
a
n
g
e
(
c
m
.
s
h
a
p
e
[
1
]
)
:

2
7
4
 
 
 
 
 
 
 
 
 
a
x
.
t
e
x
t
(
j
,
 
i
,
 
f
o
r
m
a
t
(
c
m
[
i
,
 
j
]
,
 
f
m
t
)
,
 

2
7
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
h
a
=
"
c
e
n
t
e
r
"
,
 
v
a
=
"
c
e
n
t
e
r
"
,
 

2
7
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
o
l
o
r
=
"
w
h
i
t
e
"
 if

 
c
m
[
i
,
 
j
]
 
>
 
t
h
r
e
s
h
 else

 
"
b
l
a
c
k
"
)

2
7
7
 
 
 
 
 
#
 
P
l
o
t

2
7
8
 
 
 
 
 
f
i
g
.
t
i
g
h
t
_
l
a
y
o
u
t
(
)

2
7
9
 
 
 
 
 
p
l
t
.
s
h
o
w
(
)

2
8
0
 

2
8
1
 
 
 def

 
p
l
o
t
_
a
l
l
_
c
o
n
f
u
s
i
o
n
_
m
a
t
r
i
c
e
s
(
y
_
t
r
u
e
,
 
y
_
p
r
e
d
,
 
y
_
t
r
u
e
_
v
a
l
,
 
y
_
p
r
e
d
_
v
a
l
,
 
y
_
t
r
u
e
_
t
e
s
t
,
 
y
_
p
r
e
d
_
t
e
s
t
,
 
c
l
a
s
s
e
s
,
 
n
o
r
m
a
l
i
z
e
=
F
a
l
s
e
,
 
t
i
t
l
e
=
N
o
n
e
,
 
c
m
a
p
=
'
G
n
B
u
'
,

2
8
2
 
 
 
 
 
'
'
'
P
l
o
t
 
t
r
a
i
n
,
 
v
a
l
i
d
a
t
i
o
n
,
 
a
n
d
 
t
e
s
t
 
c
o
n
f
u
s
i
o
n
 
m
a
t
r
i
c
e
s
'
'
'

2
8
3
 
 
 
 
 if

 not
 
t
i
t
l
e
:

2
8
4
 
 
 
 
 
 
 if

 
n
o
r
m
a
l
i
z
e
:

2
8
5
 
 
 
 
 
 
 
 
 
t
i
t
l
e
 
=
 
'
N
o
r
m
a
l
i
z
e
d
 
C
o
n
f
u
s
i
o
n
 
M
a
t
r
i
c
e
s
'

2
8
6
 
 
 
 
 
 
 else

:
2
8
7
 
 
 
 
 
 
 
 
 
t
i
t
l
e
 
=
 
'
N
o
n
-
N
o
r
m
a
l
i
z
e
d
 
C
o
n
f
u
s
i
o
n
 
M
a
t
r
i
c
e
s
'

2
8
8
 
 
 
 
 
#
 
C
o
m
p
u
t
e
 
c
o
n
f
u
s
i
o
n
 
m
a
t
r
i
x

2
8
9
 
 
 
 
 
c
m
_
t
r
a
i
n
 
=
 
s
k
_
c
m
(
y
_
t
r
u
e
,
 
y
_
p
r
e
d
)

2
9
0
 
 
 
 
 
c
m
_
v
a
l
 
=
 
s
k
_
c
m
(
y
_
t
r
u
e
_
v
a
l
,
 
y
_
p
r
e
d
_
v
a
l
)

2
9
1
 
 
 
 
 
c
m
_
t
e
s
t
 
=
 
s
k
_
c
m
(
y
_
t
r
u
e
_
t
e
s
t
,
 
y
_
p
r
e
d
_
t
e
s
t
)

2
9
2
 
 
 
 
 
#
 
O
n
l
y
 
u
s
e
 
t
h
e
 
l
a
b
e
l
s
 
t
h
a
t
 
a
p
p
e
a
r
 
i
n
 
t
h
e
 
d
a
t
a

2
9
3
 
 
 
 
 
c
l
a
s
s
e
s
 
=
 
c
l
a
s
s
e
s
[
u
n
i
q
u
e
_
l
a
b
e
l
s
(
y
_
t
r
u
e
,
 
y
_
p
r
e
d
)
]

2
9
4
 
 
 
 
 if

 
n
o
r
m
a
l
i
z
e
:
 

2
9
5
 
 
 
 
 
 
 
c
m
_
t
r
a
i
n
 
=
 
c
m
_
t
r
a
i
n
.
a
s
t
y
p
e
(
'
f
l
o
a
t
'
)
 
/
 
c
m
_
t
r
a
i
n
.
s
u
m
(
a
x
i
s
=
1
)
[
:
,
 
n
p
.
n
e
w
a
x
i
s
]

2
9
6
 
 
 
 
 
 
 
c
m
_
v
a
l
 
 
 
=
 
c
m
_
v
a
l
.
a
s
t
y
p
e
(
'
f
l
o
a
t
'
)
 
 
 
/
 
c
m
_
v
a
l
.
s
u
m
(
a
x
i
s
=
1
)
 
 
[
:
,
 
n
p
.
n
e
w
a
x
i
s
]

2
9
7
 
 
 
 
 
 
 
c
m
_
t
e
s
t
 
 
=
 
c
m
_
t
e
s
t
.
a
s
t
y
p
e
(
'
f
l
o
a
t
'
)
 
 
/
 
c
m
_
t
e
s
t
.
s
u
m
(
a
x
i
s
=
1
)
 
[
:
,
 
n
p
.
n
e
w
a
x
i
s
]

2
9
8
 
 
 
 
 
 
 
 
 
#
 
L
i
s
t
s

2
9
9
 
 
 
 
 
c
m
s
 
=
 
[
c
m
_
t
r
a
i
n
,
 
c
m
_
v
a
l
,
 
c
m
_
t
e
s
t
]

3
0
0
 
 
 
 
 
t
i
t
l
e
s
 
=
 
[
'
T
r
a
i
n
'
,
 
'
V
a
l
i
d
a
t
i
o
n
'
,
 
'
T
e
s
t
'
]

3
0
1
 
 
 
 
 
 
 
 
 
#
 
P
l
o
t

3
0
2
 
 
 
 
 
f
i
g
,
 
a
x
e
s
 
=
 
p
l
t
.
s
u
b
p
l
o
t
s
(
n
r
o
w
s
=
1
,
 
n
c
o
l
s
=
3
,
 
d
p
i
=
d
p
i
,
 
f
i
g
s
i
z
e
=
(
1
5
,
 
8
)
)

3
0
3
 
 
 
 
 
#
f
i
g
.
s
u
p
t
i
t
l
e
(
t
i
t
l
e
)

3
0
4
 
 
 
 
 for

 
i
,
 
a
x
 in

 
e
n
u
m
e
r
a
t
e
(
a
x
e
s
)
:

3
0
5
 
 
 
 
 
 
 
i
m
 
=
 
a
x
.
i
m
s
h
o
w
(
c
m
s
[
i
]
,
 
i
n
t
e
r
p
o
l
a
t
i
o
n
=
'
n
e
a
r
e
s
t
'
,
 
c
m
a
p
=
c
m
a
p
,
 
v
m
i
n
=
0
,
 
v
m
a
x
=
1
)

3
0
6
 
 
 
 
 
 
 
#
 
L
a
b
e
l

3
0
7
 
 
 
 
 
 
 
a
x
.
s
e
t
(
x
t
i
c
k
s
=
n
p
.
a
r
a
n
g
e
(
c
m
s
[
i
]
.
s
h
a
p
e
[
1
]
)
,

3
0
8
 
 
 
 
 
 
 
 
 
 
 
y
t
i
c
k
s
=
n
p
.
a
r
a
n
g
e
(
c
m
s
[
i
]
.
s
h
a
p
e
[
0
]
)
,

3
0
9
 
 
 
 
 
 
 
 
 
 
 
x
t
i
c
k
l
a
b
e
l
s
=
c
l
a
s
s
e
s
,
 

3
1
0
 
 
 
 
 
 
 
 
 
 
 
y
t
i
c
k
l
a
b
e
l
s
=
c
l
a
s
s
e
s
,

3
1
1
 
 
 
 
 
 
 
 
 
 
 
t
i
t
l
e
=
t
i
t
l
e
s
[
i
]
)

3
1
2
 
 
 
 
 
 
 
#
 
R
o
t
a
t
e
 
t
h
e
 
t
i
c
k
 
l
a
b
e
l
s
 
a
n
d
 
s
e
t
 
t
h
e
i
r
 
a
l
i
g
n
m
e
n
t
.

3
1
3
 
 
 
 
 
 
 
p
l
t
.
s
e
t
p
(
a
x
.
g
e
t
_
y
t
i
c
k
l
a
b
e
l
s
(
)
,
 
r
o
t
a
t
i
o
n
=
9
0
,
 
h
a
=
"
r
i
g
h
t
"
,
 
r
o
t
a
t
i
o
n
_
m
o
d
e
=
"
a
n
c
h
o
r
"
)

3
1
4
 
 
 
 
 
#
 
L
o
o
p

3
1
5
 
 
 
 
 for

 
c
,
 
c
m
 in

 
e
n
u
m
e
r
a
t
e
(
c
m
s
)
:

3
1
6
 
 
 
 
 
 
 
 
 
#
 
L
o
o
p
 
o
v
e
r
 
d
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7
 
 
 def

 
t
a
g
_
i
m
a
g
e
s
(
s
e
l
f
,
 
i
m
a
g
e
s
,
 
a
l
l
_
f
a
c
e
s
,
 
p
r
e
d
s
_
r
e
c
o
,
 
p
r
e
d
s
_
f
e
r
,
 
p
r
e
d
s
_
g
e
n
d
e
r
,
 
y
_
h
a
t
_
p
r
o
b
_
f
e
r
,

5
1
8
 
 
 
 
 
 
 
 
 
 
 
 
c
o
o
r
d
i
n
a
t
e
s
_
l
i
s
t
,
 
f
o
n
t
F
a
c
e
=
c
v
2
.
F
O
N
T
_
H
E
R
S
H
E
Y
_
S
I
M
P
L
E
X
,
 
t
h
i
c
k
n
e
s
s
=
5
)
:

5
1
9
 
 
 
 
 
'
'
'
T
a
g
s
 
f
a
c
e
s
 
a
c
c
o
r
d
i
n
g
 
t
o
 
p
r
e
d
i
c
t
e
d
 
c
l
a
s
s
 
o
n
 
t
h
e
 
g
i
v
e
n
 
i
m
a
g
e
'
'
'

5
2
0
 
 
 
 
 
c
 
=
 
0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#
 
C
o
u
n
t
e
r

5
2
1
 
 
 
 
 for

 
i
,
 
i
m
g
 in

 
e
n
u
m
e
r
a
t
e
(
i
m
a
g
e
s
)
:
 
 
 
 
 
 
 
 
#
 
F
o
r
 
e
a
c
h
 
i
m
a
g
e

5
2
2
 
 
 
 
 
 
 for

 
j
 in

 
r
a
n
g
e
(
l
e
n
(
a
l
l
_
f
a
c
e
s
[
i
]
)
)
:
 
 
#
 
F
o
r
 
e
a
c
h
 
f
a
c
e
 
i
n
 
e
a
c
h
 
i
m
a
g
e

5
2
3
 
 
 
 
 
 
 
 
 
#
 
C
a
l
c
u
l
a
t
e
 
v
a
r
i
a
b
l
e
s

5
2
4
 
 
 
 
 
 
 
 
 
i
m
a
g
e
W
i
d
t
h
,
 
i
m
a
g
e
H
e
i
g
h
t
,
 
_
 
=
 
i
m
g
.
s
h
a
p
e

5
2
5
 
 
 
 
 
 
 
 
 
x
,
 
y
,
 
w
,
 
h
 
=
 
c
o
o
r
d
i
n
a
t
e
s
_
l
i
s
t
[
i
]
[
j
]

5
2
6
 
 
 
 
 
 
 
 
 
m
y
C
o
l
o
r
 
=
 
t
u
p
l
e
(
[
x
_
i
n
*
2
5
5
 for

 
x
_
i
n
 in

 
m
c
.
t
o
_
r
g
b
(
c
l
a
s
s
_
c
o
l
o
r
s
[
p
r
e
d
s
_
r
e
c
o
[
c
]
]
)
]
)

5
2
7
 
 
 
 
 
 
 
 
 
m
y
C
o
o
r
d
i
n
a
t
e
s
 
=
 
c
o
o
r
d
i
n
a
t
e
s
_
l
i
s
t
[
i
]
[
j
]
[
0
]
,
 
c
o
o
r
d
i
n
a
t
e
s
_
l
i
s
t
[
i
]
[
j
]
[
1
]

5
2
8
 
 
 
 
 
 
 
 
 
m
y
L
a
b
e
l
T
e
x
t
 
=
 
n
u
m
_
t
o
_
c
l
a
s
s
_
f
e
r
[
p
r
e
d
s
_
f
e
r
[
c
]
]
+
'
 
'
+
s
t
r
(
y
_
h
a
t
_
p
r
o
b
_
f
e
r
[
c
]
)

5
2
9
 
 
 
 
 
 
 
 
 
m
y
F
o
n
t
S
c
a
l
e
 
=
 
(
i
m
a
g
e
W
i
d
t
h
 
*
 
i
m
a
g
e
H
e
i
g
h
t
)
 
/
 
(
1
0
0
0
 
*
 
1
0
0
0
)

5
3
0
 
 
 
 
 
 
 
 
 
m
y
F
a
c
e
C
e
n
t
e
r
 
=
 
(
i
n
t
(
x
+
w
/
2
)
,
 
i
n
t
(
y
+
h
/
2
)
)

5
3
1
 
 
 
 
 
 
 
 
 
m
y
R
a
d
i
u
s
 
=
 
i
n
t
(
h
/
2
)

5
3
2
 
 
 
 
 
 
 
 
 
#
 
D
r
a
w
 
o
n
 
i
m
a
g
e
 
-
 
r
e
c
t
a
n
g
l
e
 
f
o
r
 
M
,
 
c
i
r
c
l
e
 
f
o
r
 
F

5
3
3
 
 
 
 
 
 
 
 
 if

 
p
r
e
d
s
_
g
e
n
d
e
r
[
c
]
 
=
=
 
0
:

5
3
4
 
 
 
 
 
 
 
 
 
 
 
r
e
c
t
 
=
 
c
v
2
.
r
e
c
t
a
n
g
l
e
(
i
m
g
,
 
(
x
,
 
y
)
,
 
(
x
+
w
,
 
y
+
h
)
,
 
m
y
C
o
l
o
r
,
 
t
h
i
c
k
n
e
s
s
)

5
3
5
 
 
 
 
 
 
 
 
 else

:
5
3
6
 
 
 
 
 
 
 
 
 
 
 
c
i
r
c
l
e
 
=
 
c
v
2
.
c
i
r
c
l
e
(
i
m
g
,
 
m
y
F
a
c
e
C
e
n
t
e
r
,
 
m
y
R
a
d
i
u
s
,
 
m
y
C
o
l
o
r
,
 
t
h
i
c
k
n
e
s
s
)

5
3
7
 
 
 
 
 
 
 
 
 
c
v
2
.
p
u
t
T
e
x
t
(
i
m
g
,
 
o
r
g
=
(
m
y
C
o
o
r
d
i
n
a
t
e
s
)
,
 
t
e
x
t
=
m
y
L
a
b
e
l
T
e
x
t
,
 
f
o
n
t
F
a
c
e
=
f
o
n
t
F
a
c
e
,
 

5
3
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
n
t
S
c
a
l
e
=
m
y
F
o
n
t
S
c
a
l
e
,
c
o
l
o
r
=
(
0
,
2
5
5
,
0
)
,
 
t
h
i
c
k
n
e
s
s
=
t
h
i
c
k
n
e
s
s
)

5
3
9
 
 
 
 
 
 
 
 
 
#
 
I
n
c
r
e
m
e
n
t
 
c
o
u
n
t
e
r

5
4
0
 
 
 
 
 
 
 
 
 
c
 
+
=
 
1

5
4
1
 

5
4
2
 
 
 def

 
l
o
a
d
_
f
i
n
a
l
_
t
e
s
t
_
i
m
a
g
e
s
(
s
e
l
f
,
 
f
o
l
d
e
r
,
 
d
e
t
e
c
t
i
o
n
_
m
e
t
h
o
d
=
'
c
v
'
)
:

5
4
3
 
 
 
 
 
'
'
'
L
o
a
d
 
t
h
e
 
a
d
d
i
t
i
o
n
a
l
 
t
e
s
t
 
i
m
a
g
e
s
.
'
'
'

5
4
4
 
 
 
 
 
#
 
L
i
s
t
s

5
4
5
 
 
 
 
 
p
i
c
s
 
=
 
[
]

5
4
6
 
 
 
 
 
c
o
p
i
e
s
 
=
 
[
]

5
4
7
 
 
 
 
 
a
l
l
_
f
a
c
e
s
 
=
 
[
]

5
4
8
 
 
 
 
 
c
o
o
r
d
i
n
a
t
e
s
_
l
i
s
t
 
=
 
[
]

5
4
9
 
 
 
 
 
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s
 
=
 
[
]

5
5
0
 
 
 
 
 
u
n
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s
 
=
 
[
]

5
5
1
 
 
 
 
 
#
 
M
e
t
h
o
d
 
t
y
p
e

5
5
2
 
 
 
 
 
#
i
f
 
d
e
t
e
c
t
i
o
n
_
m
e
t
h
o
d
 
=
=
 
'
m
t
c
n
n
'
:

5
5
3
 
 
 
 
 
#
 
 
d
e
t
e
c
t
o
r
 
=
 
M
T
C
N
N
(
m
i
n
_
f
a
c
e
_
s
i
z
e
=
5
0
)

5
5
4
 
 
 
 
 
#
 
G
e
t
 
i
m
a
g
e
s

5
5
5
 
 
 
 
 print

(
'
G
e
t
t
i
n
g
 
i
m
a
g
e
s
.
.
.
'
)

5
5
6
 
 
 
 
 for

 
f
i
l
e
n
a
m
e
 in

 
s
o
r
t
e
d
(
o
s
.
l
i
s
t
d
i
r
(
f
o
l
d
e
r
)
)
:

5
5
7
 
 
 
 
 
 
 
p
i
c
_
o
f
_
i
n
t
e
r
e
s
t
 
=
 
c
v
2
.
i
m
r
e
a
d
(
o
s
.
p
a
t
h
.
j
o
i
n
(
f
o
l
d
e
r
,
 
f
i
l
e
n
a
m
e
)
)

5
5
8
 
 
 
 
 
 
 
p
i
c
_
o
f
_
i
n
t
e
r
e
s
t
 
=
 
s
e
l
f
.
c
o
n
v
e
r
t
T
o
R
G
B
(
p
i
c
_
o
f
_
i
n
t
e
r
e
s
t
)

5
5
9
 
 
 
 
 
 
 
p
i
c
s
.
a
p
p
e
n
d
(
p
i
c
_
o
f
_
i
n
t
e
r
e
s
t
)

5
6
0
 
 
 
 
 
#
 
G
e
t
 
f
a
c
e
 
c
o
o
r
d
i
n
a
t
e
s

5
6
1
 
 
 
 
 print

(
'
G
e
t
t
i
n
g
 
f
a
c
e
 
c
o
o
r
d
i
n
a
t
e
s
.
.
.
'
)

5
6
2
 
 
 
 
 for

 
p
i
c
 in

 
p
i
c
s
:

5
6
3
 
 
 
 
 
 
 
i
m
a
g
e
_
c
o
p
y
 
=
 
p
i
c
.
c
o
p
y
(
)

5
6
4
 
 
 
 
 
 
 
c
o
p
i
e
s
.
a
p
p
e
n
d
(
i
m
a
g
e
_
c
o
p
y
)

5
6
5
 
 
 
 
 
 
 
#
 
T
y
p
e

5
6
6
 
 
 
 
 
 
 
#
i
f
 
d
e
t
e
c
t
i
o
n
_
m
e
t
h
o
d
 
=
=
 
'
c
v
'
:

5
6
7
 
 
 
 
 
 
 
f
a
c
e
s
_
b
a
t
c
h
_
t
e
m
p
,
 
c
o
o
r
d
i
n
a
t
e
s
_
t
e
m
p
 
=
 
s
e
l
f
.
g
e
t
_
d
e
t
e
c
t
e
d
_
f
a
c
e
s
_
c
v
(
p
i
c
,
 
i
m
a
g
e
_
c
o
p
y
)

5
6
8
 
 
 
 
 
 
 
#
e
l
s
e
:

5
6
9
 
 
 
 
 
 
 
#
 
 
f
a
c
e
s
_
b
a
t
c
h
_
t
e
m
p
,
 
c
o
o
r
d
i
n
a
t
e
s
_
t
e
m
p
 
=
 
s
e
l
f
.
g
e
t
_
d
e
t
e
c
t
e
d
_
f
a
c
e
s
_
m
t
c
n
n
(
p
i
c
,
 
i
m
a
g
e
_
c
o
p
y
,
 
d
e
t
e
c
t
o
r
)

5
7
0
 
 
 
 
 
 
 
#
 
F
i
n
d
 
f
a
k
e
-
f
a
c
e
s

5
7
1
 
 
 
 
 
 
 
i
n
d
i
c
e
s
_
t
o
_
r
e
m
o
v
e
 
=
 
[
]

5
7
2
 
 
 
 
 
 
 for

 
i
,
 
f
a
c
e
 in

 
e
n
u
m
e
r
a
t
e
(
f
a
c
e
s
_
b
a
t
c
h
_
t
e
m
p
)
:

5
7
3
 
 
 
 
 
 
 
 
 if

 
f
a
c
e
.
s
i
z
e
 
=
=
 
0
:

5
7
4
 
 
 
 
 
 
 
 
 
 
 
i
n
d
i
c
e
s
_
t
o
_
r
e
m
o
v
e
.
a
p
p
e
n
d
(
i
)

5
7
5
 
 
 
 
 
 
 
#
 
R
e
m
o
v
e

5
7
6
 
 
 
 
 
 
 
f
a
c
e
s
_
b
a
t
c
h
 
=
 
n
p
.
d
e
l
e
t
e
(
f
a
c
e
s
_
b
a
t
c
h
_
t
e
m
p
,
 
i
n
d
i
c
e
s
_
t
o
_
r
e
m
o
v
e
,
 
a
x
i
s
=
0
)

5
7
7
 
 
 
 
 
 
 
c
o
o
r
d
i
n
a
t
e
s
 
=
 
n
p
.
d
e
l
e
t
e
(
c
o
o
r
d
i
n
a
t
e
s
_
t
e
m
p
,
 
i
n
d
i
c
e
s
_
t
o
_
r
e
m
o
v
e
,
 
a
x
i
s
=
0
)

5
7
8
 
 
 
 
 
 
 
#
 
A
p
p
e
n
d

5
7
9
 
 
 
 
 
 
 
a
l
l
_
f
a
c
e
s
.
a
p
p
e
n
d
(
f
a
c
e
s
_
b
a
t
c
h
)

5
8
0
 
 
 
 
 
 
 
c
o
o
r
d
i
n
a
t
e
s
_
l
i
s
t
.
a
p
p
e
n
d
(
c
o
o
r
d
i
n
a
t
e
s
)

5
8
1
 
 
 
 
 
#
 
C
o
n
v
e
r
t
 
f
a
c
e
s

5
8
2
 
 
 
 
 print

(
'
P
r
o
c
e
s
s
i
n
g
 
f
a
c
e
s
.
.
.
'
)

5
8
3
 
 
 
 
 for

 
f
a
c
e
_
b
a
t
c
h
 in

 
a
l
l
_
f
a
c
e
s
:

5
8
4
 
 
 
 
 
 
 for

 
i
,
 
f
a
c
e
 in

 
e
n
u
m
e
r
a
t
e
(
f
a
c
e
_
b
a
t
c
h
)
:

5
8
5
 
 
 
 
 
 
 
 
 if

 
f
a
c
e
.
s
i
z
e
 
!
=
 
0
:

5
8
6
 
 
 
 
 
 
 
 
 
 
 
u
n
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s
.
a
p
p
e
n
d
(
f
a
c
e
)

5
8
7
 
 
 
 
 
 
 
 
 
 
 
f
a
c
e
 
=
 
s
e
l
f
.
e
q
u
a
l
i
s
e
_
i
m
a
g
e
(
f
a
c
e
,
 
e
q
_
t
y
p
e
=
'
H
S
V
'
)

5
8
8
 
 
 
 
 
 
 
 
 
 
 
f
a
c
e
 
=
 
s
e
l
f
.
s
t
a
n
d
a
r
d
i
s
e
_
i
m
a
g
e
(
f
a
c
e
)

5
8
9
 
 
 
 
 
 
 
 
 
 
 
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s
.
a
p
p
e
n
d
(
s
e
l
f
.
r
e
s
i
z
e
_
i
m
a
g
e
(
f
a
c
e
)
)

5
9
0
 
 
 
 
 print

(
'
D
o
n
e
!
'
)

5
9
1
 
 
 
 
 return

 
p
i
c
s
,
 
c
o
p
i
e
s
,
 
a
l
l
_
f
a
c
e
s
,
 
c
o
o
r
d
i
n
a
t
e
s
_
l
i
s
t
,
 
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s
,
 
u
n
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s

5
9
2
 

5
9
3
 
 
 def

 
p
l
o
t
_
b
e
f
o
r
e
_
a
f
t
e
r
_
t
a
g
(
s
e
l
f
,
 
i
m
a
g
e
s
,
 
c
o
p
i
e
s
)
:

5
9
4
 
 
 
 
 
'
'
'
P
l
o
t
 
t
h
e
 
b
e
f
o
r
e
 
a
n
d
 
a
f
t
e
r
 
t
a
g
 
i
m
a
g
e
s
 
s
i
d
e
 
b
y
 
s
i
d
e
'
'
'

5
9
5
 
 
 
 
 for

 
i
,
 
i
m
g
 in

 
e
n
u
m
e
r
a
t
e
(
i
m
a
g
e
s
)
:

5
9
6
 
 
 
 
 
 
 
p
l
t
.
f
i
g
u
r
e
(
d
p
i
=
1
5
0
)

5
9
7
 
 
 
 
 
 
 
p
l
t
.
i
m
s
h
o
w
(
n
p
.
h
s
t
a
c
k
(
(
c
o
p
i
e
s
[
i
]
,
 
i
m
g
)
)
)

5
9
8
 
 
 
 
 
 
 
p
l
t
.
a
x
i
s
(
'
o
f
f
'
)

5
9
9
 
 
 
 
 
 
 
p
l
t
.
s
h
o
w
(
)

6
0
0
 

6
0
1
 
 
 def

 
r
e
s
t
o
r
e
_
m
o
d
e
l
(
s
e
l
f
,
 
g
r
a
p
h
,
 
g
r
a
p
h
_
d
i
r
,
 
c
h
e
c
k
p
o
i
n
t
_
d
i
r
)
:

6
0
2
 
 
 
 
 
'
'
'
I
m
p
o
r
t
 
g
r
a
p
h
 
a
n
d
 
r
e
s
t
o
r
e
 
m
o
d
e
l
 
v
a
r
i
a
b
l
e
s
'
'
'

6
0
3
 
 
 
 
 with

 
g
r
a
p
h
.
a
s
_
d
e
f
a
u
l
t
(
)
:

6
0
4
 
 
 
 
 
 
 
#
 
L
o
a
d
 
g
r
a
p
h
 
a
n
d
 
r
e
s
t
o
r
e
 
t
f
 
v
a
r
i
a
b
l
e
s

6
0
5
 
 
 
 
 
 
 
s
a
v
e
r
 
=
 
t
f
.
t
r
a
i
n
.
i
m
p
o
r
t
_
m
e
t
a
_
g
r
a
p
h
(
g
r
a
p
h
_
d
i
r
)

6
0
6
 
 
 
 
 
 
 
l
a
t
e
s
t
_
c
h
e
c
k
p
o
i
n
t
 
=
 
t
f
.
t
r
a
i
n
.
l
a
t
e
s
t
_
c
h
e
c
k
p
o
i
n
t
(
c
h
e
c
k
p
o
i
n
t
_
d
i
r
)

6
0
7
 
 
 
 
 
 
 
s
e
s
s
 
=
 
t
f
.
S
e
s
s
i
o
n
(
g
r
a
p
h
=
g
r
a
p
h
)

6
0
8
 
 
 
 
 
 
 
s
a
v
e
r
.
r
e
s
t
o
r
e
(
s
e
s
s
,
 
l
a
t
e
s
t
_
c
h
e
c
k
p
o
i
n
t
)

6
0
9
 
 
 
 
 
 
 
#
 
G
e
t
 
r
e
l
e
v
a
n
t
 
t
e
n
s
o
r
s

6
1
0
 
 
 
 
 
 
 
t
f
_
c
n
n
_
s
o
f
t
m
a
x
 
=
 
g
r
a
p
h
.
g
e
t
_
t
e
n
s
o
r
_
b
y
_
n
a
m
e
(
'
C
N
N
/
S
o
f
t
m
a
x
:
0
'
)

6
1
1
 
 
 
 
 
 
 
t
f
_
p
l
a
c
e
h
o
l
d
e
r
 
=
 
g
r
a
p
h
.
g
e
t
_
t
e
n
s
o
r
_
b
y
_
n
a
m
e
(
'
P
l
a
c
e
h
o
l
d
e
r
:
0
'
)

6
1
2
 
 
 
 
 return

 
s
e
s
s
,
 
t
f
_
c
n
n
_
s
o
f
t
m
a
x
,
 
t
f
_
p
l
a
c
e
h
o
l
d
e
r

6
1
3
 

6
1
4
 
 
 def

 
r
u
n
_
m
o
d
e
l
(
s
e
l
f
,
 
s
e
s
s
,
 
t
f
_
p
l
a
c
e
h
o
l
d
e
r
,
 
t
f
_
c
n
n
_
s
o
f
t
m
a
x
,
 
x
_
t
e
s
t
)
:

6
1
5
 
 
 
 
 
'
'
'
R
u
n
 
m
o
d
e
l
'
'
'

6
1
6
 
 
 
 
 
p
r
o
b
s
 
=
 
s
e
s
s
.
r
u
n
(
t
f
_
c
n
n
_
s
o
f
t
m
a
x
,
 
f
e
e
d
_
d
i
c
t
=
{
t
f
_
p
l
a
c
e
h
o
l
d
e
r
:
 
x
_
t
e
s
t
}
)

6
1
7
 
 
 
 
 
y
_
h
a
t
 
=
 
n
p
.
a
r
g
m
a
x
(
p
r
o
b
s
,
 
a
x
i
s
=
1
)

6
1
8
 
 
 
 
 return

 
p
r
o
b
s
,
 
y
_
h
a
t

6
1
9
 

6
2
0
 
 
 def

 
r
u
n
_
k
e
r
a
s
_
m
o
d
e
l
(
s
e
l
f
,
 
m
o
d
e
l
,
 
x
_
t
e
s
t
)
:

6
2
1
 
 
 
 
 
'
'
'
R
u
n
 
K
e
r
a
s
 
M
o
d
e
l
'
'
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  1 import numpy as np
  2 import tensorflow as tf
  3 from sklearn.utils import shuffle
  4 from myutilitymethods import MyMethods
  5 
  6 class MyCNN:
  7   
  8   """
  9   Convolutional neural network class which trains on data for facial tasks, 
 10   such as face recognition, or gender classification.
 11   
 12   Parameters
 13   ----------
 14   x_train          : Train images data
 15   y_train          : Train images labels
 16   x_test           : Test images data
 17   y_test           : Test images labels
 18   output_dir       : Directory for saving checkpoints
 19   num_to_class     : List for converting a number to a class value string
 20   class_to_num     : Dictionary for converting a class string to a number
 21   lr               : Learning rate                           (default = 1e-3)
 22   nb_epochs        : Number of epochs                        (default = 10)
 23   batch_size_train : Train batch size                        (default = 30)
 24   seed             : Seed for random functions               (default = 0)
 25   type             : Type of model                           (default = softmax)
 26   """
 27     
 28   def __init__(self,
 29          x_train,
 30          y_train,
 31          x_test,
 32          y_test,
 33          output_dir,
 34          num_to_class,
 35          class_to_num,
 36          lr=1e-3,
 37          nb_epochs=10,
 38          batch_size_train=30,
 39          seed=0,
 40          final_activation='softmax'):
 41 
 42         # Variables
 43     self.x_train = x_train
 44     self.y_train = y_train
 45     self.x_test = x_test
 46     self.y_test = y_test
 47     self.output_dir = output_dir
 48     self.lr = lr
 49     self.nb_epochs = nb_epochs
 50     self.batch_size_train = batch_size_train
 51     self.seed = seed
 52     self.final_activation = final_activation.lower()
 53     
 54     self.nb_classes = y_train.shape[1] # This assumes one-hot encode
 55     self.nb_images, self.edge, _, self.channels = x_train.shape
 56     self.nb_train_iterations = self.nb_images // batch_size_train
 57     self.im = tf.placeholder(tf.float32, [None, 28, 28, self.channels])
 58     self.labels = tf.placeholder(tf.float32, [None, self.nb_classes])
 59     
 60     self.accuracy_list = []
 61     self.losses_list = []
 62     self.test_losses_list = []
 63     self.test_accuracy_list = []
 64     self.val_accuracy_list = []
 65     self.val_losses_list = []
 66     self.preds_list = []
 67     self.probs_list = []
 68     self.preds_list_test = []
 69     self.probs_list_test = []
 70     
 71     self.mm = MyMethods(self.nb_classes, num_to_class, class_to_num)
 72     self.sess = tf.InteractiveSession()
 73     self.summary = tf.Summary()
 74     self.writer = tf.summary.FileWriter(self.output_dir)
 75     self.writer.add_graph(self.sess.graph)
 76         
 77   def model_variables(self):
 78     '''Print out all class variables'''
 79     print('x_train             :', self.x_train.shape)
 80     print('y_train             :', self.y_train.shape)
 81     print('x_test              :', self.x_test.shape)
 82     print('y_test              :', self.y_test.shape)
 83     print('output_dir          :', self.output_dir)
 84     print('lr                  :', self.lr)
 85     print('nb_epochs           :', self.nb_epochs)
 86     print('batch_size_train    :', self.batch_size_train)
 87     print('seed                :', self.seed)
 88     print('nb_classes          :', self.nb_classes)
 89     print('nb_images           :', self.nb_images)
 90     print('nb_train_iterations :', self.nb_train_iterations)
 91     print('im                  :', self.im)
 92     print('labels              :', self.labels)

 93         
 94   def set_up_saver(self):
 95     self.saver = tf.train.Saver()
 96   
 97   def create_model(self):
 98     '''Creates defined TensorFlow model'''
 99     with tf.variable_scope('CNN', reuse=tf.AUTO_REUSE):
100       self.first_layer = tf.layers.conv2d(self.im, 32, (4,4), strides=1, activation=tf.nn.relu)            
101       self.second_layer = tf.layers.conv2d(self.first_layer, 64, (4,4), strides=2, activation=tf.nn.relu)
102       self.third_layer = tf.layers.conv2d(self.second_layer, 128, (4,4), strides=2, activation=tf.nn.relu)
103       self.fourth_layer = tf.layers.conv2d(self.third_layer, 256, (4,4), strides=2, activation=None)
104       self.flattened = tf.layers.flatten(self.fourth_layer)
105       self.logits = tf.layers.dense(self.flattened, self.nb_classes, activation=None) 
106       if self.final_activation == 'softmax':
107         self.preds = tf.nn.softmax(self.logits)
108       elif self.final_activation == 'sigmoid':
109         self.preds = tf.nn.sigmoid(self.logits)
110       else:
111         print("Error: the model.final_activation parameter can only either be 'softmax' or 'sigmoid'. ")
112 
113   def model_summary(self):
114     '''Prints out the model's architecture shapes'''
115     print('first_layer  : conv2D  -', self.first_layer.shape)
116     print('second_layer : conv2D  -', self.second_layer.shape)
117     print('third_layer  : conv2D  -', self.third_layer.shape)
118     print('fourth_layer : conv2D  -', self.fourth_layer.shape)
119     print('flattened.   : Flatten -', self.flattened.shape)
120     print('logits       : Dense   -', self.logits.shape)
121     print('preds        : Softmax -', self.preds.shape)
122   
123   def compute_loss(self):
124     '''Computes loss for the model'''
125     with tf.variable_scope('loss'):
126       if self.final_activation == 'softmax':
127         self.loss = tf.losses.softmax_cross_entropy(self.labels, logits=self.logits)
128         self.loss_summ = tf.summary.scalar("softmax_loss", self.loss)
129       elif self.final_activation == 'sigmoid':
130         self.loss = tf.losses.sigmoid_cross_entropy(self.labels, logits=self.logits)
131         self.loss_summ = tf.summary.scalar("sigmoid_loss", self.loss)
132       else:
133         print("Error: the model.final_activation parameter can only either be 'softmax' or 'sigmoid'. ")
134   
135   def optimizer(self):
136     '''Defines optimizer used for the model'''
137     with tf.variable_scope('optimizer'):
138       optimizer = tf.train.AdamOptimizer(learning_rate=self.lr, beta1=0.5)
139       self.model_vars = tf.trainable_variables()
140       self.trainer = optimizer.minimize(self.loss, var_list=self.model_vars)
141    
142   def train(self, verbose=False, cross_k_fold_validation=True):
143     '''
144     Trains the model on the parsed x_train and y_train values for the given number of epochs. 
145     Saves checkpoints in output directory.
146     '''
147     
148     if cross_k_fold_validation:
149       # We split the train data into k equal subsets for k-fold cross validation
150       # Note: these subsets are different from iteration batches used for optimisated gradient descent
151       cut_x_train = self.x_train.reshape(self.x_train.shape[0], np.prod(self.x_train.shape[1:])) # (20000, 2352)
152       subset_size = cut_x_train.shape[0]//self.nb_epochs
153       cut_x_train = cut_x_train.reshape(self.nb_epochs, cut_x_train.shape[1]*subset_size) # (200, 235200)
154       
155       cut_y_train = np.argmax(self.y_train, axis=1) # (20000,)
156       cut_y_train = cut_y_train.reshape(self.nb_epochs, subset_size) # (200, 100)
157       
158     else:
159       self.x_train, self.y_train, self.x_val, self.y_val = self.mm.split_train_test(self.x_train, self.y_train)
160       
161       x_in = self.x_train
162       y_in = self.y_train
163       
164       if self.y_val.ndim == 1:
165         self.y_val = self.mm.one_hot_encode(self.y_val)
166     
167     for epoch in range(self.nb_epochs):
168       
169       if cross_k_fold_validation:
170         # Get validation data from the training set, both which change at each epoch
171         x_in = np.delete(cut_x_train, epoch, axis=0) # (199, 235200)
172         y_in = np.delete(cut_y_train, epoch, axis=0) # (199, 100)
173         self.x_val = cut_x_train[epoch] # (1, 235200) = (235200,)
174         self.y_val = cut_y_train[epoch] # (1, 100) = (100,)
175         
176         # Reshape back to standard
177         x_in = x_in.reshape(x_in.shape[0]*subset_size, x_in.shape[1]//subset_size) # (19900, 2352)
178         x_in = x_in.reshape(x_in.shape[0], 28, 28, self.channels) # (19900, 28, 28, 3)
179         
180         y_in = y_in.reshape(y_in.shape[0]*subset_size) # (19900,)
181         if y_in.ndim == 1:
182           y_in = self.mm.one_hot_encode(y_in) # (19900, 4)
183         
184         self.x_val = self.x_val.reshape(subset_size, 28, 28, self.channels) # (100, 28, 28, 3)
185         if self.y_val.ndim == 1:
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186           self.y_val = self.mm.one_hot_encode(self.y_val) # (100, 4)
187       
188       # Reset
189       self.preds_list = []
190       self.probs_list = []
191       self.probs_list_val = []
192       self.preds_list_val = []
193       
194       # Shuffle order for both subsets
195       x_in, y_in = shuffle(x_in, y_in, random_state=self.seed)
196       self.x_val, self.y_val = shuffle(self.x_val, self.y_val, random_state=self.seed)
197       
198       # Loop through iterations
199       for i in range(self.nb_train_iterations):
200         
201         # Take batch 
202         input_x_train = x_in[i*self.batch_size_train: (i+1)*self.batch_size_train]
203         input_y_train = y_in[i*self.batch_size_train: (i+1)*self.batch_size_train]
204         
205         # Train model
206         _ , probs, loss, loss_summ = self.sess.run([self.trainer, self.preds, self.loss, self.loss_summ], 
207                                                           feed_dict={self.im: input_x_train, self.labels: input_y_train})
208         
209         self.writer.add_summary(loss_summ, epoch * self.nb_train_iterations + i)
210       
211       # We want the entire train set score after each epoch for those epoch values
212       probs, loss = self.sess.run([self.preds, self.loss], feed_dict={self.im: x_in, self.labels: y_in})
213       y_hat = np.argmax(probs, axis=1)
214       
215       self.probs_list.append(probs)
216       self.preds_list.append(y_hat)
217 
218       y_real = np.argmax(y_in, axis=1)
219       acc_train = np.mean(self.preds_list == y_real)
220       self.accuracy_list.append(acc_train)
221       self.losses_list.append(loss) 
222       
223       # We want the entire validation set score after each epoch
224       probs_val, loss_val = self.sess.run([self.preds, self.loss], feed_dict={self.im: self.x_val, self.labels: self.y_val})
225       
226       y_hat_val = np.argmax(probs_val, axis=1)
227       y_real_val = np.argmax(self.y_val, axis=1)
228       
229       self.probs_list_val.append(probs_val)
230       self.preds_list_val.append(y_hat_val)
231       
232       acc_val = np.mean(y_hat_val == y_real_val)
233       self.val_accuracy_list.append(acc_val)
234       self.val_losses_list.append(loss_val)
235       
236       # Print
237       if verbose:
238         print(f'Epoch {epoch}, Train acc {np.round(acc_train, 2)}, Validation acc {np.round(acc_val, 2)}')
239       
240       # Save
241       self.saver.save(self.sess, self.output_dir, global_step=epoch)
242       
243     # For the final epoch we want the predictions for the non-shuffled x_train and y_train (not x_in and y_in)
244     probs = self.sess.run(self.preds, feed_dict={self.im: self.x_train, self.labels: self.y_train})
245     self.probs_list = probs
246     self.preds_list = np.argmax(probs, axis=1)
247     
248     # Flatten
249     self.probs_list_val = np.concatenate(self.probs_list_val, axis=0)
250     self.preds_list_val = np.concatenate(self.preds_list_val, axis=0)
251       
252   def test(self):
253     '''Tests and prints the model's accuracy on the test data set or a custom input.'''
254         
255         # Reset
256     self.preds_list_test = []
257     self.probs_list_test = []
258     
259     # Run
260     probs_test = self.sess.run(self.preds, feed_dict={self.im: self.x_test, self.labels: self.y_test})
261     
262     # Append results
263     self.probs_list_test.append(probs_test)
264     self.preds_list_test.append(np.argmax(probs_test, axis=1))
265     
266     # Flatten
267     self.probs_list_test = np.concatenate(self.probs_list_test, axis=0)
268     self.preds_list_test = np.concatenate(self.preds_list_test, axis=0)
269     
270     # Print final accuracy
271     y_real_test = np.argmax(self.y_test, axis=1)
272     full_acc_test = np.mean(self.preds_list_test==y_real_test)
273     print('Test accuracy achieved: %.3f' %full_acc_test)
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  1 import keras
  2 import numpy as np
  3 import tensorflow as tf
  4 from sklearn.utils import shuffle
  5 from keras.models import Sequential
  6 from keras.layers import Dense, Dropout, Activation, Flatten
  7 from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
  8 from keras.losses import categorical_crossentropy
  9 from keras.optimizers import Adam
 10 from keras.regularizers import l2
 11 from keras.callbacks import ReduceLROnPlateau, TensorBoard, EarlyStopping, ModelCheckpoint
 12 
 13 class MyDeepCNN:
 14   
 15   """
 16   Convolutional neural network class which trains on data for facial tasks, 
 17   such as face recognition, or gender classification.
 18   
 19   Parameters
 20   ----------
 21   x_train          : Train images data
 22   y_train          : Train images labels
 23   x_test           : Validation images data
 24   y_test           : Validation images labels
 25   x_test           : Test images data
 26   y_test           : Test images labels
 27   output_dir       : Directory for saving model
 28   lr               : Learning rate                           (default = 1e-3)
 29   beta_1           : Beta 1                                  (default = 0.9)
 30   beta_2           : Beta 2                                  (default = 0.999)
 31   nb_epochs        : Number of epochs                        (default = 50)
 32   epsilon          : Epsilon                                 (default = 1e-7)
 33   batch_size       : Train batch size                        (default = 64)
 34   seed             : Seed for random functions               (default = 0)
 35   num_features     : Number of features                      (default = 64)
 36   """
 37   
 38   def __init__(self, 
 39         x_train,
 40         y_train,
 41         x_val,
 42         y_val,
 43         x_test,
 44         y_test,
 45         output_dir,
 46         lr=1e-3,
 47         beta_1=0.9,
 48         beta_2=0.999,
 49         nb_epochs=50,
 50         epsilon=1e-7,
 51         batch_size=64,
 52         seed=0,
 53         num_features=64):
 54     
 55     # Variables
 56     self.x_train = x_train
 57     self.y_train = y_train
 58     self.x_val = x_val
 59     self.y_val = y_val
 60     self.x_test = x_test
 61     self.y_test = y_test
 62 
 63     self.output_dir = output_dir
 64     self.lr = lr
 65     self.beta_1 = 0.9
 66     self.beta_2 = 0.999
 67     self.nb_epochs = nb_epochs
 68     self.epsilon = epsilon
 69     self.batch_size = batch_size
 70     self.seed = seed
 71     self.num_features = num_features
 72 
 73     self.model = Sequential()
 74     self.nb_classes = y_train.shape[1] # This assumes one-hot encode
 75     self.nb_images, self.edge, _, self.channels = self.x_train.shape
 76     self.preds_list_test = []
 77     self.probs_list_test = []
 78         
 79     self.history = None
 80     self.sess = tf.InteractiveSession()
 81     keras.backend.set_session(self.sess)
 82 
 83   def model_variables(self):
 84     '''Print out all class variables'''
 85     print('x_train      :', self.x_train.shape)
 86     print('y_train      :', self.y_train.shape)
 87     print('x_val        :', self.x_val.shape)
 88     print('y_val.       :', self.y_val.shape)
 89     print('x_test.      :', self.x_test.shape)
 90     print('y_test.      :', self.y_test.shape)
 91     print('output_dir   :', self.output_dir)
 92     print('lr           :', self.lr)
 93     print('beta_1       :', self.beta_1)
 94     print('beta_2       :', self.beta_2)
 95     print('nb_epochs    :', self.nb_epochs)
 96     print('epsilon      :', self.epsilon)
 97     print('batch_size   :', self.batch_size)
 98     print('seed         :', self.seed)
 99     print('num_features :', self.num_features)
100     print('nb_classes   :', self.nb_classes)
101     print('nb_images    :', self.nb_images)
102 
103   def create_model(self):
104     '''Creates defined TensorFlow model'''
105     self.model.add(Conv2D(self.num_features, kernel_size=(3, 3), activation='relu', input_shape=(self.edge, self.edge, self.channels), kernel_regularizer
106     self.model.add(Conv2D(self.num_features, kernel_size=(3, 3), activation='relu', padding='same'))
107     self.model.add(BatchNormalization())
108     self.model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
109     self.model.add(Dropout(0.5))
110     

111     self.model.add(Conv2D(2*self.num_features, kernel_size=(3, 3), activation='relu', padding='same'))
112     self.model.add(BatchNormalization())
113     self.model.add(Conv2D(2*self.num_features, kernel_size=(3, 3), activation='relu', padding='same'))
114     self.model.add(BatchNormalization())
115     self.model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
116     self.model.add(Dropout(0.5))
117     
118     self.model.add(Conv2D(2*2*self.num_features, kernel_size=(3, 3), activation='relu', padding='same'))
119     self.model.add(BatchNormalization())
120     self.model.add(Conv2D(2*2*self.num_features, kernel_size=(3, 3), activation='relu', padding='same'))
121     self.model.add(BatchNormalization())
122     self.model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
123     self.model.add(Dropout(0.5))
124     
125     self.model.add(Conv2D(2*2*2*self.num_features, kernel_size=(3, 3), activation='relu', padding='same'))
126     self.model.add(BatchNormalization())
127     self.model.add(Conv2D(2*2*2*self.num_features, kernel_size=(3, 3), activation='relu', padding='same'))
128     self.model.add(BatchNormalization())
129     self.model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
130     self.model.add(Dropout(0.5))
131     
132     self.model.add(Flatten())
133     
134     self.model.add(Dense(2*2*2*self.num_features, activation='relu'))
135     self.model.add(Dropout(0.4))
136     self.model.add(Dense(2*2*self.num_features, activation='relu'))
137     self.model.add(Dropout(0.4))
138     self.model.add(Dense(2*self.num_features, activation='relu'))
139     self.model.add(Dropout(0.5))
140     
141     self.model.add(Dense(self.nb_classes, activation='softmax')) 
142 
143   def model_summary(self):
144     '''Print model summary'''
145     print(self.model.summary())
146 
147   def train(self, verbose=False):
148     ''' Trains the model on the parsed x_train and y_train values for the given number of epochs. Saves final .h5 model in output directory.'''
149     # Convert True/False to 1/0 integer
150     verbose = int(verbose)
151         
152     # Compile
153     self.model.compile(loss=categorical_crossentropy,
154                  optimizer=Adam(lr=self.lr, 
155                         beta_1=self.beta_1, 
156                         beta_2=self.beta_2, 
157                         epsilon=self.epsilon),
158                  metrics=['accuracy'])
159         
160     # Train
161     self.history = self.model.fit(np.array(self.x_train), np.array(self.y_train),
162                      batch_size=self.batch_size,
163                      epochs=self.nb_epochs,
164                      verbose=verbose,
165                      validation_data=(np.array(self.x_val), np.array(self.y_val)),
166                      shuffle=True)
167 
168     # Save
169     self.model.save(self.output_dir+'/my_keras_model.h5')
170     self.model.save_weights(self.output_dir+'/my_keras_model_weights.h5')
171 
172   def test(self, verbose=False):
173     '''Tests and prints the model's accuracy on the test data set.'''
174     # Convert True/False to 1/0 integer
175     verbose = int(verbose)
176 
177     # Reset
178     self.preds_list_test = []
179     self.probs_list_test = []
180 
181     # Run
182     probs_test = self.model.predict(self.x_test, batch_size=self.batch_size, verbose=verbose)
183 
184     # Results
185     self.probs_list_test.append(probs_test)
186     self.preds_list_test = np.argmax(probs_test, axis=1)
187     y_real_test = np.argmax(self.y_test, axis=1)
188 
189     # Print
190     full_acc_test = np.mean(self.preds_list_test==y_real_test)
191     print('Test accuracy achieved: %.3f' %full_acc_test)
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'
'
R
e
-
c
r
e
a
t
e
s
 
K
e
r
a
s
 
m
o
d
e
l
'
'
'

1
3
3
 
 
 
 
 
m
o
d
e
l
 
=
 
k
e
r
a
s
.
S
e
q
u
e
n
t
i
a
l
(
)

1
3
4
 
 
 
 
 

1
3
5
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
C
o
n
v
2
D
(
n
u
m
_
f
e
a
t
u
r
e
s
,
 
k
e
r
n
e
l
_
s
i
z
e
=
(
3
,
 
3
)
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
,
 
i
n
p
u
t
_
s
h
a
p
e
=
(
e
d
g
e
,
 
e
d
g
e
,
 
c
h
a
n
n
e
l
s
)
,
 
k
e
r
n
e
l
_
r
e
g
u
l
a
r
i
z
e
r
=
l
2
(
0
.
0
1
)
)
)

1
3
6
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
C
o
n
v
2
D
(
n
u
m
_
f
e
a
t
u
r
e
s
,
 
k
e
r
n
e
l
_
s
i
z
e
=
(
3
,
 
3
)
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
,
 
p
a
d
d
i
n
g
=
'
s
a
m
e
'
)
)

1
3
7
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
(
)
)

1
3
8
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
M
a
x
P
o
o
l
i
n
g
2
D
(
p
o
o
l
_
s
i
z
e
=
(
2
,
 
2
)
,
 
s
t
r
i
d
e
s
=
(
2
,
 
2
)
)
)

1
3
9
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
r
o
p
o
u
t
(
0
.
5
)
)

1
4
0
 
 
 
 
 

1
4
1
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
C
o
n
v
2
D
(
2
*
n
u
m
_
f
e
a
t
u
r
e
s
,
 
k
e
r
n
e
l
_
s
i
z
e
=
(
3
,
 
3
)
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
,
 
p
a
d
d
i
n
g
=
'
s
a
m
e
'
)
)

1
4
2
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
(
)
)

1
4
3
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
C
o
n
v
2
D
(
2
*
n
u
m
_
f
e
a
t
u
r
e
s
,
 
k
e
r
n
e
l
_
s
i
z
e
=
(
3
,
 
3
)
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
,
 
p
a
d
d
i
n
g
=
'
s
a
m
e
'
)
)

1
4
4
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
(
)
)

1
4
5
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
M
a
x
P
o
o
l
i
n
g
2
D
(
p
o
o
l
_
s
i
z
e
=
(
2
,
 
2
)
,
 
s
t
r
i
d
e
s
=
(
2
,
 
2
)
)
)

1
4
6
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
r
o
p
o
u
t
(
0
.
5
)
)

1
4
7
 
 
 
 
 

1
4
8
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
C
o
n
v
2
D
(
2
*
2
*
n
u
m
_
f
e
a
t
u
r
e
s
,
 
k
e
r
n
e
l
_
s
i
z
e
=
(
3
,
 
3
)
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
,
 
p
a
d
d
i
n
g
=
'
s
a
m
e
'
)
)

1
4
9
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
(
)
)

1
5
0
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
C
o
n
v
2
D
(
2
*
2
*
n
u
m
_
f
e
a
t
u
r
e
s
,
 
k
e
r
n
e
l
_
s
i
z
e
=
(
3
,
 
3
)
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
,
 
p
a
d
d
i
n
g
=
'
s
a
m
e
'
)
)

1
5
1
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
(
)
)

1
5
2
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
M
a
x
P
o
o
l
i
n
g
2
D
(
p
o
o
l
_
s
i
z
e
=
(
2
,
 
2
)
,
 
s
t
r
i
d
e
s
=
(
2
,
 
2
)
)
)

1
5
3
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
r
o
p
o
u
t
(
0
.
5
)
)

1
5
4
 
 
 
 
 

1
5
5
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
C
o
n
v
2
D
(
2
*
2
*
2
*
n
u
m
_
f
e
a
t
u
r
e
s
,
 
k
e
r
n
e
l
_
s
i
z
e
=
(
3
,
 
3
)
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
,
 
p
a
d
d
i
n
g
=
'
s
a
m
e
'
)
)

1
5
6
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
(
)
)

1
5
7
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
C
o
n
v
2
D
(
2
*
2
*
2
*
n
u
m
_
f
e
a
t
u
r
e
s
,
 
k
e
r
n
e
l
_
s
i
z
e
=
(
3
,
 
3
)
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
,
 
p
a
d
d
i
n
g
=
'
s
a
m
e
'
)
)

1
5
8
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
B
a
t
c
h
N
o
r
m
a
l
i
z
a
t
i
o
n
(
)
)

1
5
9
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
M
a
x
P
o
o
l
i
n
g
2
D
(
p
o
o
l
_
s
i
z
e
=
(
2
,
 
2
)
,
 
s
t
r
i
d
e
s
=
(
2
,
 
2
)
)
)

1
6
0
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
r
o
p
o
u
t
(
0
.
5
)
)

1
6
1
 
 
 
 
 

1
6
2
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
F
l
a
t
t
e
n
(
)
)

1
6
3
 
 
 
 
 

1
6
4
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
e
n
s
e
(
2
*
2
*
2
*
n
u
m
_
f
e
a
t
u
r
e
s
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
)
)

1
6
5
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
r
o
p
o
u
t
(
0
.
4
)
)

1
6
6
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
e
n
s
e
(
2
*
2
*
n
u
m
_
f
e
a
t
u
r
e
s
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
)
)

1
6
7
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
r
o
p
o
u
t
(
0
.
4
)
)

1
6
8
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
e
n
s
e
(
2
*
n
u
m
_
f
e
a
t
u
r
e
s
,
 
a
c
t
i
v
a
t
i
o
n
=
'
r
e
l
u
'
)
)

1
6
9
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
r
o
p
o
u
t
(
0
.
5
)
)

1
7
0
 
 
 
 
 

1
7
1
 
 
 
 
 
m
o
d
e
l
.
a
d
d
(
D
e
n
s
e
(
n
b
_
c
l
a
s
s
e
s
,
 
a
c
t
i
v
a
t
i
o
n
=
'
s
o
f
t
m
a
x
'
)
)

1
7
2
 

1
7
3
 
 
 
 
 return

 
m
o
d
e
l
 
 

1
7
4
 

1
7
5
 def

 
l
o
a
d
_
f
i
n
a
l
_
t
e
s
t
_
i
m
a
g
e
s
(
f
o
l
d
e
r
=
'
T
e
s
t
I
m
a
g
e
s
/
'
,
 
d
e
t
e
c
t
i
o
n
_
m
e
t
h
o
d
=
'
c
v
'
)
:

1
7
6
 
 
 
 
 

1
7
7
 
 
 
 
 
p
i
c
s
 
=
 
[
]

1
7
8
 
 
 
 
 
c
o
p
i
e
s
 
=
 
[
]

1
7
9
 
 
 
 
 
a
l
l
_
f
a
c
e
s
 
=
 
[
]

1
8
0
 
 
 
 
 
c
o
o
r
d
i
n
a
t
e
s
_
l
i
s
t
 
=
 
[
]

1
8
1
 
 
 
 
 
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s
 
=
 
[
]

1
8
2
 
 
 
 
 
u
n
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s
 
=
 
[
]

1
8
3
 
 
 
 
 

1
8
4
 
 
 
 
 if

 
d
e
t
e
c
t
i
o
n
_
m
e
t
h
o
d
 
=
=
 
'
m
t
c
n
n
'
:

1
8
5
 
 
 
 
 
 
 
 
 
d
e
t
e
c
t
o
r
 
=
 
M
T
C
N
N
(
m
i
n
_
f
a
c
e
_
s
i
z
e
=
5
0
)

1
8
6
 
 
 
 
 

1
8
7
 
 
 
 
 
#
 
G
e
t
 
i
m
a
g
e
s

1
8
8
 
 
 
 
 print

(
'
G
e
t
t
i
n
g
 
i
m
a
g
e
s
.
.
.
'
)

1
8
9
 
 
 
 
 for

 
f
i
l
e
n
a
m
e
 in

 
s
o
r
t
e
d
(
o
s
.
l
i
s
t
d
i
r
(
f
o
l
d
e
r
)
)
:

1
9
0
 
 
 
 
 
 
 
 
 
p
i
c
_
o
f
_
i
n
t
e
r
e
s
t
 
=
 
c
v
2
.
i
m
r
e
a
d
(
o
s
.
p
a
t
h
.
j
o
i
n
(
f
o
l
d
e
r
,
 
f
i
l
e
n
a
m
e
)
)

1
9
1
 
 
 
 
 
 
 
 
 
p
i
c
_
o
f
_
i
n
t
e
r
e
s
t
 
=
 
m
m
.
c
o
n
v
e
r
t
T
o
R
G
B
(
p
i
c
_
o
f
_
i
n
t
e
r
e
s
t
)

1
9
2
 
 
 
 
 
 
 
 
 
p
i
c
s
.
a
p
p
e
n
d
(
p
i
c
_
o
f
_
i
n
t
e
r
e
s
t
)

1
9
3
 

1
9
4
 
 
 
 
 
#
 
G
e
t
 
f
a
c
e
 
c
o
o
r
d
i
n
a
t
e
s

1
9
5
 
 
 
 
 print

(
'
G
e
t
t
i
n
g
 
f
a
c
e
 
c
o
o
r
d
i
n
a
t
e
s
.
.
.
'
)

1
9
6
 
 
 
 
 for

 
p
i
c
 in

 
p
i
c
s
:

1
9
7
 
 
 
 
 
 
 
 
 
i
m
a
g
e
_
c
o
p
y
 
=
 
p
i
c
.
c
o
p
y
(
)

1
9
8
 
 
 
 
 
 
 
 
 
c
o
p
i
e
s
.
a
p
p
e
n
d
(
i
m
a
g
e
_
c
o
p
y
)

1
9
9
 
 
 
 
 
 
 
 
 

2
0
0
 
 
 
 
 
 
 
 
 if

 
d
e
t
e
c
t
i
o
n
_
m
e
t
h
o
d
 
=
=
 
'
c
v
'
:

2
0
1
 
 
 
 
 
 
 
 
 
 
 
 
 
f
a
c
e
s
_
b
a
t
c
h
_
t
e
m
p
,
 
c
o
o
r
d
i
n
a
t
e
s
_
t
e
m
p
 
=
 
g
e
t
_
d
e
t
e
c
t
e
d
_
f
a
c
e
s
_
c
v
(
p
i
c
,
 
i
m
a
g
e
_
c
o
p
y
)

2
0
2
 
 
 
 
 
 
 
 
 else

:
2
0
3
 
 
 
 
 
 
 
 
 
 
 
 
 
f
a
c
e
s
_
b
a
t
c
h
_
t
e
m
p
,
 
c
o
o
r
d
i
n
a
t
e
s
_
t
e
m
p
 
=
 
g
e
t
_
d
e
t
e
c
t
e
d
_
f
a
c
e
s
_
m
t
c
n
n
(
p
i
c
,
 
i
m
a
g
e
_
c
o
p
y
,
 
d
e
t
e
c
t
o
r
)

2
0
4
 
 
 
 
 
 
 
 
 

2
0
5
 
 
 
 
 
 
 
 
 
#
 
F
i
n
d
 
f
a
k
e
-
f
a
c
e
s

2
0
6
 
 
 
 
 
 
 
 
 
i
n
d
i
c
e
s
_
t
o
_
r
e
m
o
v
e
 
=
 
[
]

2
0
7
 
 
 
 
 
 
 
 
 

2
0
8
 
 
 
 
 
 
 
 
 for

 
i
,
 
f
a
c
e
 in

 
e
n
u
m
e
r
a
t
e
(
f
a
c
e
s
_
b
a
t
c
h
_
t
e
m
p
)
:

2
0
9
 
 
 
 
 
 
 
 
 
 
 
 
 if

 
f
a
c
e
.
s
i
z
e
 
=
=
 
0
:

2
1
0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
n
d
i
c
e
s
_
t
o
_
r
e
m
o
v
e
.
a
p
p
e
n
d
(
i
)

2
1
1
 
 
 
 
 
 
 
 
 

2
1
2
 
 
 
 
 
 
 
 
 
#
 
R
e
m
o
v
e

2
1
3
 
 
 
 
 
 
 
 
 
f
a
c
e
s
_
b
a
t
c
h
 
=
 
n
p
.
d
e
l
e
t
e
(
f
a
c
e
s
_
b
a
t
c
h
_
t
e
m
p
,
 
i
n
d
i
c
e
s
_
t
o
_
r
e
m
o
v
e
,
 
a
x
i
s
=
0
)

2
1
4
 
 
 
 
 
 
 
 
 
c
o
o
r
d
i
n
a
t
e
s
 
=
 
n
p
.
d
e
l
e
t
e
(
c
o
o
r
d
i
n
a
t
e
s
_
t
e
m
p
,
 
i
n
d
i
c
e
s
_
t
o
_
r
e
m
o
v
e
,
 
a
x
i
s
=
0
)

2
1
5
 
 
 
 
 
 
 
 
 

2
1
6
 
 
 
 
 
 
 
 
 
#
 
A
p
p
e
n
d

2
1
7
 
 
 
 
 
 
 
 
 
a
l
l
_
f
a
c
e
s
.
a
p
p
e
n
d
(
f
a
c
e
s
_
b
a
t
c
h
)

2
1
8
 
 
 
 
 
 
 
 
 
c
o
o
r
d
i
n
a
t
e
s
_
l
i
s
t
.
a
p
p
e
n
d
(
c
o
o
r
d
i
n
a
t
e
s
)

2
1
9
 

2
2
0
 
 
 
 
 
#
 
C
o
n
v
e
r
t
 
f
a
c
e
s

2
2
1
 
 
 
 
 print

(
'
P
r
o
c
e
s
s
i
n
g
 
f
a
c
e
s
.
.
.
'
)
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2
2
2
 
 
 
 
 for

 
f
a
c
e
_
b
a
t
c
h
 in

 
a
l
l
_
f
a
c
e
s
:

2
2
3
 
 
 
 
 
 
 
 
 for

 
i
,
 
f
a
c
e
 in

 
e
n
u
m
e
r
a
t
e
(
f
a
c
e
_
b
a
t
c
h
)
:

2
2
4
 
 
 
 
 
 
 
 
 
 
 
 
 if

 
f
a
c
e
.
s
i
z
e
 
!
=
 
0
:

2
2
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
u
n
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s
.
a
p
p
e
n
d
(
f
a
c
e
)

2
2
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
a
c
e
 
=
 
m
m
.
e
q
u
a
l
i
s
e
_
i
m
a
g
e
(
f
a
c
e
,
 
e
q
_
t
y
p
e
=
'
H
S
V
'
)

2
2
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
a
c
e
 
=
 
m
m
.
s
t
a
n
d
a
r
d
i
s
e
_
i
m
a
g
e
(
f
a
c
e
)

2
2
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s
.
a
p
p
e
n
d
(
m
m
.
r
e
s
i
z
e
_
i
m
a
g
e
(
f
a
c
e
)
)

2
2
9
 
 
 
 
 
 
 
 
 
 
 
 
 

2
3
0
 
 
 
 
 print

(
'
D
o
n
e
!
'
)

2
3
1
 
 
 
 
 return

 
p
i
c
s
,
 
c
o
p
i
e
s
,
 
a
l
l
_
f
a
c
e
s
,
 
c
o
o
r
d
i
n
a
t
e
s
_
l
i
s
t
,
 
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s
,
 
u
n
n
o
r
m
a
l
i
s
e
d
_
f
a
c
e
s

2
3
2
 

2
3
3
 def

 
p
l
o
t
_
b
e
f
o
r
e
_
a
f
t
e
r
_
t
a
g
(
i
m
a
g
e
s
,
 
c
o
p
i
e
s
)
:

2
3
4
 

2
3
5
 
 
 
 
 for

 
i
,
 
i
m
g
 in

 
e
n
u
m
e
r
a
t
e
(
i
m
a
g
e
s
)
:

2
3
6
 
 
 
 
 
 
 
 
 
p
l
t
.
f
i
g
u
r
e
(
d
p
i
=
1
5
0
)

2
3
7
 
 
 
 
 
 
 
 
 
p
l
t
.
i
m
s
h
o
w
(
n
p
.
h
s
t
a
c
k
(
(
c
o
p
i
e
s
[
i
]
,
 
i
m
g
)
)
)

2
3
8
 
 
 
 
 
 
 
 
 
p
l
t
.
a
x
i
s
(
'
o
f
f
'
)

2
3
9
 
 
 
 
 
 
 
 
 
p
l
t
.
t
i
g
h
t
_
l
a
y
o
u
t
(
)

2
4
0
 
 
 
 
 
 
 
 
 
p
l
t
.
l
e
g
e
n
d
(
l
i
n
e
s
,
 
[
'
M
y
s
e
l
f
'
,
 
'
S
i
s
t
e
r
'
,
 
'
M
o
t
h
e
r
'
,
 
'
F
a
t
h
e
r
'
]
,
 

2
4
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b
b
o
x
_
t
o
_
a
n
c
h
o
r
=
(
0
.
0
,
 
1
.
1
5
)
,
 
l
o
c
=
"
u
p
p
e
r
 
l
e
f
t
"
,
 
n
c
o
l
=
4
)

2
4
2
 
 
 
 
 
 
 
 
 
#
r
a
n
d
_
n
a
m
e
 
=
 
s
t
r
(
n
p
.
r
a
n
d
o
m
.
r
a
n
d
i
n
t
(
1
,
 
1
0
0
0
0
0
)
)

2
4
3
 
 
 
 
 
 
 
 
 
#
p
l
t
.
s
a
v
e
f
i
g
(
f
'
{
r
a
n
d
_
n
a
m
e
}
.
p
d
f
'
,
 
b
b
o
x
_
i
n
c
h
e
s
=
'
t
i
g
h
t
'
,
 
f
o
r
m
a
t
=
'
p
d
f
'
,
 
d
p
i
=
2
0
0
)

2
4
4
 
 
 
 
 
 
 
 
 
p
l
t
.
s
h
o
w
(
)

2
4
5
 

2
4
6
 def

 
r
e
s
t
o
r
e
_
m
o
d
e
l
(
g
r
a
p
h
,
 
g
r
a
p
h
_
d
i
r
,
 
c
h
e
c
k
p
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[
2
]

1
1
7
 
 
 

1
1
8
 
 
 
#
 
R
e
s
t
o
r
e
 
K
e
r
a
s
 
F
E
R
 
m
o
d
e
l

1
1
9
 
 
 if

 
a
r
g
s
.
a
l
l
M
o
d
e
l
s
 or

 
a
r
g
s
.
e
m
o
t
i
o
n
D
e
t
e
c
t
:

1
2
0
 
 
 
 
 
w
e
i
g
h
t
s
_
d
i
r
_
k
e
r
a
s
_
f
e
r
 
=
 
'
K
e
r
a
s
_
l
o
g
d
i
r
/
m
y
_
k
e
r
a
s
_
m
o
d
e
l
_
w
e
i
g
h
t
s
.
h
5
'

1
2
1
 
 
 
 
 
g
r
a
p
h
_
d
i
r
_
k
e
r
a
s
_
f
e
r
 
=
 
'
K
e
r
a
s
_
l
o
g
d
i
r
/
m
y
_
k
e
r
a
s
_
m
o
d
e
l
.
h
5
'

1
2
2
 
 
 
 
 
c
h
e
c
k
p
o
i
n
t
_
d
i
r
_
k
e
r
a
s
_
f
e
r
 
=
 
'
K
e
r
a
s
_
l
o
g
d
i
r
/
m
o
d
e
l
.
c
k
p
t
'

1
2
3
 
 
 
 
 
#
m
o
d
e
l
_
f
e
r
 
=
 
k
e
r
a
s
.
m
o
d
e
l
s
.
l
o
a
d
_
m
o
d
e
l
(
g
r
a
p
h
_
d
i
r
_
k
e
r
a
s
_
f
e
r
)

1
2
4
 
 
 
 
 
m
o
d
e
l
_
f
e
r
 
=
 
r
e
c
r
e
a
t
e
_
k
e
r
a
s
_
m
o
d
e
l
(
6
4
,
 
N
U
M
_
C
L
A
S
S
E
S
_
F
E
R
,
 
2
8
,
 
3
)

1
2
5
 
 
 
 
 
m
o
d
e
l
_
f
e
r
.
l
o
a
d
_
w
e
i
g
h
t
s
(
w
e
i
g
h
t
s
_
d
i
r
_
k
e
r
a
s
_
f
e
r
)

1
2
6
 
 
 

1
2
7
 
 
 
#
 
R
e
s
t
o
r
e
 
G
e
n
d
e
r
 
m
o
d
e
l

1
2
8
 
 
 if

 
a
r
g
s
.
a
l
l
M
o
d
e
l
s
 or

 
a
r
g
s
.
g
e
n
d
e
r
C
l
a
s
s
:

1
2
9
 
 
 
 
 
g
r
a
p
h
_
d
i
r
_
g
e
n
d
e
r
 
=
 
'
G
e
n
d
e
r
_
l
o
g
d
i
r
/
-
7
4
.
m
e
t
a
'

1
3
0
 
 
 
 
 
c
h
e
c
k
p
o
i
n
t
_
d
i
r
_
g
e
n
d
e
r
 
=
 
'
G
e
n
d
e
r
_
l
o
g
d
i
r
/
'

1
3
1
 
 
 
 
 
g
e
n
d
e
r
_
v
a
l
u
e
s
 
=
 
m
m
.
r
e
s
t
o
r
e
_
m
o
d
e
l
(
g
r
a
p
h
_
g
e
n
d
e
r
,
 
g
r
a
p
h
_
d
i
r
_
g
e
n
d
e
r
,
 
c
h
e
c
k
p
o
i
n
t
_
d
i
r
_
g
e
n
d
e
r
)

1
3
2
 
 
 
 
 
s
e
s
s
_
g
e
n
d
e
r
 
=
 
g
e
n
d
e
r
_
v
a
l
u
e
s
[
0
]

1
3
3
 
 
 
 
 
t
f
_
c
n
n
_
s
o
f
t
m
a
x
_
g
e
n
d
e
r
 
=
 
g
e
n
d
e
r
_
v
a
l
u
e
s
[
1
]

1
3
4
 
 
 
 
 
t
f
_
p
l
a
c
e
h
o
l
d
e
r
_
g
e
n
d
e
r
 
=
 
g
e
n
d
e
r
_
v
a
l
u
e
s
[
2
]

1
3
5
 
 
 

1
3
6
 
 
 
f
r
a
m
e
s
 
=
 
[
]

1
3
7
 

1
3
8
 
 
 
#
 
R
u
n
 
c
a
m
e
r
a

1
3
9
 
 
 while

(
T
r
u
e
)
:

1
4
0
 
 
 
 
 
#
 
C
a
p
t
u
r
e
 
f
r
a
m
e
-
b
y
-
f
r
a
m
e

1
4
1
 
 
 
 
 
r
e
t
,
 
f
r
a
m
e
 
=
 
c
a
p
.
r
e
a
d
(
)

1
4
2
 

1
4
3
 
 
 
 
 
#
 
O
u
r
 
o
p
e
r
a
t
i
o
n
s
 
o
n
 
t
h
e
 
f
r
a
m
e
 
c
o
m
e
 
h
e
r
e

1
4
4
 
 
 
 
 
r
g
b
_
f
r
a
m
e
 
=
 
c
v
2
.
c
v
t
C
o
l
o
r
(
f
r
a
m
e
,
 
c
v
2
.
C
O
L
O
R
_
B
G
R
2
R
G
B
)

1
4
5
 
 
 
 
 
f
r
a
m
e
s
.
a
p
p
e
n
d
(
r
g
b
_
f
r
a
m
e
)

1
4
6
 

1
4
7
 
 
 
 
 
#
 
C
o
p
y

1
4
8
 
 
 
 
 
i
m
a
g
e
_
c
o
p
y
 
=
 
r
g
b
_
f
r
a
m
e
.
c
o
p
y
(
)

1
4
9
 

1
5
0
 
 
 
 
 
#
 
G
e
t
 
h
e
a
d
s

1
5
1
 
 
 
 
 
c
a
s
c
a
d
e
 
=
 
c
v
2
.
C
a
s
c
a
d
e
C
l
a
s
s
i
f
i
e
r
(
p
a
t
h
)

1
5
2
 
 
 
 
 
f
a
c
e
s
_
r
e
c
t
 
=
 
c
a
s
c
a
d
e
.
d
e
t
e
c
t
M
u
l
t
i
S
c
a
l
e
(
r
g
b
_
f
r
a
m
e
,
 
s
c
a
l
e
F
a
c
t
o
r
=
1
.
1
,
 
m
i
n
N
e
i
g
h
b
o
r
s
=
5
)

1
5
3
 
 
 
 
 
#
f
a
c
e
s
_
r
e
c
t
 
=
 
d
e
t
e
c
t
o
r
.
d
e
t
e
c
t
_
f
a
c
e
s
(
r
g
b
_
f
r
a
m
e
)

1
5
4
 

1
5
5
 
 
 
 
 
#
 
P
l
o
t
 
r
e
c
t
a
n
g
l
e
(
s
)
 
f
o
r
 
e
a
c
h
 
f
a
c
e
 
i
n
 
e
a
c
h
 
f
r
a
m
e

1
5
6
 
 
 
 
 for

 
f
a
c
e
 in

 
f
a
c
e
s
_
r
e
c
t
:

1
5
7
 
 
 
 
 
 
 
x
,
 
y
,
 
w
,
 
h
 
=
 
f
a
c
e

1
5
8
 
 
 
 
 
 
 
#
x
,
 
y
,
 
w
,
 
h
 
=
 
f
a
c
e
[
'
b
o
x
'
]

1
5
9
 
 
 
 
 
 
 
r
o
i
s
 
=
 
[
i
m
a
g
e
_
c
o
p
y
[
y
:
y
+
h
,
 
x
:
x
+
w
]
]

1
6
0
 

1
6
1
 
 
 
 
 
 
 if

 
f
a
c
e
.
s
i
z
e
 
!
=
 
0
:

1
6
2
 
 
 
 
 
 
 
 
 
n
o
r
m
_
f
a
c
e
 
=
 
m
m
.
e
q
u
a
l
i
s
e
_
i
m
a
g
e
(
r
o
i
s
[
0
]
,
 
e
q
_
t
y
p
e
=
'
H
S
V
'
)

1
6
3
 
 
 
 
 
 
 
 
 
n
o
r
m
_
f
a
c
e
 
=
 
m
m
.
s
t
a
n
d
a
r
d
i
s
e
_
i
m
a
g
e
(
n
o
r
m
_
f
a
c
e
)

1
6
4
 
 
 
 
 
 
 
 
 
n
o
r
m
_
f
a
c
e
 
=
 
m
m
.
r
e
s
i
z
e
_
i
m
a
g
e
(
n
o
r
m
_
f
a
c
e
)

1
6
5
 
 
 
 
 
 
 

1
6
6
 
 
 
 
 
 
 if

 
a
r
g
s
.
a
l
l
M
o
d
e
l
s
 or

 
a
r
g
s
.
f
a
c
e
R
e
c
o
:

1
6
7
 
 
 
 
 
 
 
 
 
p
r
o
b
s
_
r
e
c
o
,
 
y
_
h
a
t
_
r
e
c
o
 
=
 
m
m
.
r
u
n
_
m
o
d
e
l
(
s
e
s
s
_
r
e
c
o
,
 
t
f
_
p
l
a
c
e
h
o
l
d
e
r
_
r
e
c
o
,
 
 
 
t
f
_
c
n
n
_
s
o
f
t
m
a
x
_
r
e
c
o
,
 
n
o
r
m
_
f
a
c
e
[
N
o
n
e
,
:
,
:
,
:
]
)

1
6
8
 
 
 
 
 
 
 

1
6
9
 
 
 
 
 
 
 if

 
a
r
g
s
.
a
l
l
M
o
d
e
l
s
 or

 
a
r
g
s
.
e
m
o
t
i
o
n
D
e
t
e
c
t
:

1
7
0
 
 
 
 
 
 
 
 
 
p
r
o
b
s
_
f
e
r
,
 
y
_
h
a
t
_
f
e
r
 
=
 
m
m
.
r
u
n
_
k
e
r
a
s
_
m
o
d
e
l
(
m
o
d
e
l
_
f
e
r
,
 
n
o
r
m
_
f
a
c
e
[
N
o
n
e
,
:
,
:
,
:
]
)

1
7
1
 

1
7
2
 
 
 
 
 
 
 if

 
a
r
g
s
.
a
l
l
M
o
d
e
l
s
 or

 
a
r
g
s
.
g
e
n
d
e
r
C
l
a
s
s
:

1
7
3
 
 
 
 
 
 
 
 
 
p
r
o
b
s
_
g
e
n
d
e
r
,
 
y
_
h
a
t
_
g
e
n
d
e
r
 
=
 
m
m
.
r
u
n
_
m
o
d
e
l
(
s
e
s
s
_
g
e
n
d
e
r
,
 
t
f
_
p
l
a
c
e
h
o
l
d
e
r
_
g
e
n
d
e
r
,
 
 
t
f
_
c
n
n
_
s
o
f
t
m
a
x
_
g
e
n
d
e
r
,
 
n
o
r
m
_
f
a
c
e
[
N
o
n
e
,
:
,
:
,
:
]
)

1
7
4
 

1
7
5
 
 
 
 
 
 
 
#
 
D
e
f
i
n
e
 
v
a
r
i
a
b
l
e
s

1
7
6
 
 
 
 
 
 
 
#
m
y
L
a
b
e
l
T
e
x
t
 
=
 
n
u
m
_
t
o
_
c
l
a
s
s
_
g
e
n
d
e
r
[
y
_
h
a
t
_
g
e
n
d
e
r
[
0
]
]
+
'
-
'
+
n
u
m
_
t
o
_
c
l
a
s
s
_
f
e
r
[
y
_
h
a
t
_
f
e
r
[
0
]
]

1
7
7
 
 
 
 
 
 
 
m
y
L
a
b
e
l
T
e
x
t
 
=
 
n
u
m
_
t
o
_
c
l
a
s
s
_
f
e
r
[
y
_
h
a
t
_
f
e
r
[
0
]
]
+
'
 
'
+
s
t
r
(
n
p
.
r
o
u
n
d
(
n
p
.
m
a
x
(
p
r
o
b
s
_
f
e
r
,
 
a
x
i
s
=
1
)
,
 
2
)
[
0
]
)

1
7
8
 
 
 
 
 
 
 
m
y
C
o
l
o
r
 
=
 
b
g
r
_
c
o
l
o
r
s
[
y
_
h
a
t
_
r
e
c
o
[
0
]
]

1
7
9
 
 
 
 
 
 
 
m
y
F
o
n
t
S
c
a
l
e
 
=
 
(
f
r
a
m
e
.
s
h
a
p
e
[
0
]
 
*
 
f
r
a
m
e
.
s
h
a
p
e
[
1
]
)
 
/
 
(
1
0
0
0
 
*
 
1
0
0
0
)

1
8
0
 
 
 
 
 
 
 
m
y
F
a
c
e
C
e
n
t
e
r
 
=
 
(
i
n
t
(
x
+
w
/
2
)
,
 
i
n
t
(
y
+
h
/
2
)
)

1
8
1
 
 
 
 
 
 
 
m
y
R
a
d
i
u
s
 
=
 
i
n
t
(
h
/
2
)

1
8
2
 
 
 
 
 
 
 
m
y
C
o
o
r
d
i
n
a
t
e
s
 
=
 
x
,
 
y

1
8
3
 

1
8
4
 
 
 
 
 
 
 if

 
y
_
h
a
t
_
g
e
n
d
e
r
[
0
]
 
=
=
 
0
:

1
8
5
 
 
 
 
 
 
 
 
 
r
e
c
t
 
=
 
c
v
2
.
r
e
c
t
a
n
g
l
e
(
f
r
a
m
e
,
 
(
x
,
 
y
)
,
 
(
x
+
w
,
 
y
+
h
)
,
 
m
y
C
o
l
o
r
,
 
t
h
i
c
k
n
e
s
s
=
2
)

1
8
6
 
 
 
 
 
 
 else

:
1
8
7
 
 
 
 
 
 
 
 
 
c
i
r
c
l
e
 
=
 
c
v
2
.
c
i
r
c
l
e
(
f
r
a
m
e
,
 
m
y
F
a
c
e
C
e
n
t
e
r
,
 
m
y
R
a
d
i
u
s
,
 
m
y
C
o
l
o
r
,
 
t
h
i
c
k
n
e
s
s
=
2
)

1
8
8
 

1
8
9
 
 
 
 
 
 
 
#
 
T
a
g

1
9
0
 
 
 
 
 
 
 
c
v
2
.
p
u
t
T
e
x
t
(
f
r
a
m
e
,
 

1
9
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o
r
g
=
(
m
y
C
o
o
r
d
i
n
a
t
e
s
)
,
 

1
9
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t
e
x
t
=
m
y
L
a
b
e
l
T
e
x
t
,
 

1
9
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
n
t
F
a
c
e
=
f
o
n
t
F
a
c
e
,
 

1
9
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
n
t
S
c
a
l
e
=
m
y
F
o
n
t
S
c
a
l
e
,
 

1
9
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
o
l
o
r
=
g
r
e
e
n
_
c
o
l
o
r
)

1
9
6
 

1
9
7
 
 
 
 
 
#
 
D
i
s
p
l
a
y
 
t
h
e
 
r
e
s
u
l
t
i
n
g
 
f
r
a
m
e

1
9
8
 
 
 
 
 
c
v
2
.
i
m
s
h
o
w
(
'
f
r
a
m
e
'
,
 
f
r
a
m
e
)

1
9
9
 
 
 

2
0
0
 
 
 
 
 
#
 
R
e
l
e
a
s
e
 
k
e
y
s

2
0
1
 
 
 
 
 if

 
c
v
2
.
w
a
i
t
K
e
y
(
1
)
 
&
 
0
x
F
F
 
=
=
 
o
r
d
(
'
q
'
)
:

2
0
2
 
 
 
 
 
 
 break

2
0
3
 
 
 

2
0
4
 
 
 
#
 
W
h
e
n
 
e
v
e
r
y
t
h
i
n
g
 
d
o
n
e
,
 
r
e
l
e
a
s
e
 
t
h
e
 
c
a
p
t
u
r
e

2
0
5
 
 
 
c
a
p
.
r
e
l
e
a
s
e
(
)

2
0
6
 
 
 
c
v
2
.
d
e
s
t
r
o
y
A
l
l
W
i
n
d
o
w
s
(
)

2
0
7
 

2
0
8
 if

 
_
_
n
a
m
e
_
_
 
=
=
 
"
_
_
m
a
i
n
_
_
"
:

2
0
9
 
 
 
 
 
m
a
i
n
(
)
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D.9 Real-Time Model



 
1
 import

 matplotlib.pyplot
 as

 plt
 
2
 import

 numpy
 as

 np
 
3
 import

 datetime
 
4
 import

 cv2
 
5
 import

 os
 
6
 

 
7
 def

 
c
o
n
v
e
r
t
T
o
R
G
B
(
i
m
a
g
e
)
:

 
8
 
 
 '''Convert image from BGR to RGB'''

 
9
 
 
 return

 
c
v
2
.
c
v
t
C
o
l
o
r
(
i
m
a
g
e
,
 
c
v
2
.
C
O
L
O
R
_
B
G
R
2
R
G
B
)

1
0
 

1
1
 def

 
s
a
v
e
_
d
e
t
e
c
t
e
d
_
f
a
c
e
s
(
c
a
s
c
a
d
e
,
 
i
m
a
g
e
,
 
s
c
a
l
e
F
a
c
t
o
r
 
=
 
1
.
1
,
 
o
u
t
p
u
t
_
d
i
r
 
=
 
'
/
U
s
e
r
s
/
E
k
l
a
v
y
a
/
M
o
v
i
e
s
/
S
o
r
t
e
d
F
a
c
e
s
/
D
a
d
/
'
,
 
d
a
t
e
_
f
o
r
m
a
t
 
=
 
"
%
Y
_
%
m
_%d

_
%
H
_
%
M
_
%
S
_%f

"
)
:

1
2
 
 
 '''Saves the cropped faces in the given output directory'''

1
3
 
 
 
r
o
i
s
 
=
 
[
]

1
4
 
 
 
i
m
a
g
e
 
=
 
c
o
n
v
e
r
t
T
o
R
G
B
(
i
m
a
g
e
)

1
5
 
 
 # Apply the haar classifier to detect faces

1
6
 
 
 
f
a
c
e
s
_
r
e
c
t
 
=
 
c
a
s
c
a
d
e
.
d
e
t
e
c
t
M
u
l
t
i
S
c
a
l
e
(
i
m
a
g
e
,
 
s
c
a
l
e
F
a
c
t
o
r
=
s
c
a
l
e
F
a
c
t
o
r
,
 
m
i
n
N
e
i
g
h
b
o
r
s
=
5
)

1
7
 
 
 # For each face, get the region of interest and save it

1
8
 
 
 for

 
i
,
(
x
,
 
y
,
 
w
,
 
h
)
 in

 
e
n
u
m
e
r
a
t
e
(
f
a
c
e
s
_
r
e
c
t
)
:

1
9
 
 
 
 
 
r
o
i
 
=
 
i
m
a
g
e
[
y
:
y
+
h
,
 
x
:
x
+
w
]

2
0
 
 
 
 
 
c
v
2
.
i
m
w
r
i
t
e
(
f
'
{
o
u
t
p
u
t
_
d
i
r
}
/
{
d
a
t
e
t
i
m
e
.
d
a
t
e
t
i
m
e
.
n
o
w
(
)
.
s
t
r
f
t
i
m
e
(
d
a
t
e
_
f
o
r
m
a
t
)
[
:
-
4
]
}
.
p
n
g
'
,
 
c
o
n
v
e
r
t
T
o
R
G
B
(
r
o
i
)
)

2
1
 

2
2
 def

 
g
e
t
_
i
m
a
g
e
s
(
f
o
l
d
e
r
,
 
c
a
s
c
a
d
e
)
:

2
3
 
 
 '''Takes in directory path and returns the images's pixels as a list'''

2
4
 
 
 
i
m
a
g
e
s
 
=
 
[
]

2
5
 
 
 for

 
f
i
l
e
n
a
m
e
 in

 
s
o
r
t
e
d
(
o
s
.
l
i
s
t
d
i
r
(
f
o
l
d
e
r
)
)
:

2
6
 
 
 
 
 # Load, convert

2
7
 
 
 
 
 
i
m
g
 
=
 
c
v
2
.
i
m
r
e
a
d
(
o
s
.
p
a
t
h
.
j
o
i
n
(
f
o
l
d
e
r
,
 
f
i
l
e
n
a
m
e
)
)

2
8
 
 
 
 
 # Append

2
9
 
 
 
 
 if

 
i
m
g
 is

 not
 
N
o
n
e
:

3
0
 
 
 
 
 
 
 
s
a
v
e
_
d
e
t
e
c
t
e
d
_
f
a
c
e
s
(
c
a
s
c
a
d
e
,
 
i
m
g
)

3
1
 

3
2
 def

 
m
a
i
n
(
)
:

3
3
 
 
 
h
a
a
r
_
c
a
s
c
a
d
e
_
f
a
c
e
 
=
 
c
v
2
.
C
a
s
c
a
d
e
C
l
a
s
s
i
f
i
e
r
(
'
d
a
t
a
/
h
a
a
r
c
a
s
c
a
d
e
s
/
h
a
a
r
c
a
s
c
a
d
e
_
f
r
o
n
t
a
l
f
a
c
e
_
a
l
t
2
.
x
m
l
'
)

3
4
 
 
 
i
m
a
g
e
s
 
=
 
g
e
t
_
i
m
a
g
e
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 1 import pandas as pd
 2 import numpy as np
 3 import argparse
 4 import cv2
 5 import sys
 6 import os
 7 
 8 def convert_images_to_csv(args, img_size=28):
 9   '''Takes in directory path and returns the compressed images's pixels as a list'''
10 
11   images = []
12 
13   # Iterate through images in folder
14   for i, filename in enumerate(sorted(os.listdir(args.input_dir))):
15       if filename.split(".")[-1].lower() in {"jpeg", "jpg", "png"}:
16 
17         # Print progress
18         if args.debug:
19           percent = int((i+1)/len(os.listdir(args.input_dir))*100)
20           if percent%10==0:
21             print(percent,'%')
22         
23         # Load and append
24         img = cv2.imread(os.path.join(args.input_dir, filename))
25         img = cv2.resize(img, (img_size, img_size))
26         images.append(img)
27   
28   # Convert
29   images = np.array(images)
30 
31   if args.debug:
32     print('Saving as .csv file ...')
33 
34   # Save images as .csv
35   np.savetxt(args.output_dir+'/'+args.filename+'.csv', 
36              images.reshape(images.shape[0], np.prod(images.shape[1:])), 
37              delimiter=",",
38              fmt='%i')
39 
40 def main():
41   parser = argparse.ArgumentParser(description='Convert images in a folder to .csv')
42   parser.add_argument('-d','--debug', action='store_true', default=False, help='Print progress to stderr')
43   parser.add_argument('-i','--input_dir', type=str, action='store', help='Give input directory path')
44   parser.add_argument('-o','--output_dir', type=str, action='store', help="Give output directory path")
45   parser.add_argument('-f','--filename', type=str, default='image_data', action='store', help='Give output file name')
46   args = parser.parse_args()
47 
48   images = convert_images_to_csv(args)
49 
50 if __name__ == "__main__":
51   main()

122 Appendix D. Source Codes

D.11 Convert Images to Data



123

Appendix E

User Manual

GitHub Link
All files: https://github.com/EklavyaFCB/FacialInformationExtraction

Kaggle Link
Notebooks: https://www.kaggle.com/eklavyas/kernels
Personal dataset: https://www.kaggle.com/eklavyas/familyfaces
FER2013 dataset: http://tiny.cc/FER2013

Requirements

• seaborn==0.9.0

• Keras==2.2.4

• numpy==1.16.4

• opencv_python_headless==4.1.0.25

• mtcnn==0.0.9

• albumentations==0.3.0

• matplotlib==3.1.0

• tensorflow==1.14.0

• pandas==0.24.2

• ipython==7.8.0

• MyMethods==1.0.0

• scikit_learn==0.21.3

Installation
$ pip install -r requirements.txt

Sample Usage
$ python3 RestoreModel.py

$ python3 LiveInput.py

Common Errors

https://github.com/EklavyaFCB/FacialInformationExtraction
https://www.kaggle.com/eklavyas/kernels
https://www.kaggle.com/eklavyas/familyfaces
http://tiny.cc/FER2013
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OpenCV(4.1.0) /Users/ travis/ build/ skvark/ opencv-python/ opencv/

modules/ objdetect/ src/ cascadedetect.cpp:1658: error: (-215:Assertion

failed) !empty() in function ‘detectMultiScale’

A .DS_Store file in the directory TestImages containing the images. This
can be solved by navigating to the directory containing the images, and
delete the file in question.

$ cd TestImages

$ rm -rf .DS_Store

Deprecation Warnings
TensorFlow might give out a list of deprecation warnings - these can be
safetly ignored.

Admin Permissions
Note that this script might require administrative permissions in order to
use the device’s webcam, which must often be password approved.
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