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Redmon et al., 2016. You only look once: unified, real-time object detection.
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Visual Recognition

! Facial Identification 

! Medical Image Analysis 

! Drug Design
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High-Level Feature Extraction

! Eyes 

! Nose 

! Lips

! Wheels 

! Windshields 

! Headlights

! Doors 

! Windows 

! Roofs

Can you identify key features in each image category ?
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Manual Feature Extraction

! Viewpoint variation 

! Scale variation 

! Occlusion 

! Deformation

→ →Domain Knowledge Define Features Detect Features to Classify

Traditional Rule-Based Methods:

Problems ?

! Background clutter 

! Illumination conditions 

! Variation 

! Etc



! Make the machine learn the features by itself 
! Take into account the spatial proximity of features
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Solution

Convolutional Neural Networks (CNNs)

Convolutions
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ada lovelace was a mathematician 
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century. lovelace holds the honor 
of having published the very 
first algorithm intended to be 
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the first-ever computer 
programmer. a

Input Filter Feature Map

We use filters to extract local features.
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ada lovelace was a mathematician 
and writer who lived in the 19th 
century. lovelace holds the honor 
of having published the very 
first algorithm intended to be 
used by a machine to perform 
calculations, which make lovelace 
the first-ever computer 
programmer.
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Input Filter Feature Map

First-Layer Convolution
We use filters to extract local features.
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We use multiple filters to extract different features.

First-Layer Filters: da

ada

Second-Layer Feature Map
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Convolutional Neural Networks (CNNs)

Deep Learning
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CNNs in Technology

! Automatic image recognition and captioning

! Used for visually impaired people

19
Wu et al., 2017, February. Automatic alt-text: Computer-generated image descriptions for blind users on a social network service. 2017 ACM Conference.
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CNNs in Life Sciences

Medical Diagnosis
! CheXNet: 

- 21-layer CNN

- Input: chest X-ray image

- Outputs: probability of a pathology

20
Rajpurkar et al., 2017. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning.
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! Visual recognition

! Convolutions

○ Filters

○ Feature Maps

○ Architectures

○ Strides

○ Layers

! Handling complexity

21

Summary


