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Redmon et al., 2016. You only look once: unified, real-time object detection.




e Facial Identification

e Medical Image Analysis
Visual Recognition e Drug Design
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High-Level Feature Extraction

Can you identify key features in each image category ?

e Eyes e Wheels e Doors
e Nose e Windshields e Windows
o Lips e Headlights e Roofs
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Manual Feature Extraction

Traditional Rule-Based Methods:

Domain Knowledge — Define Features — Detect Features to Classify

Problems ?

e Viewpoint variation e Background clutter
e Scale variation e lllumination conditions
e Occlusion e Variation

e Deformation o FEtc
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e Make the machine learn the features by itself

e [lake into account the spatial proximity of features
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First-Layer Convolution

We use filters to extract local features.

ada lovelace was a mathematician
and writer who lived in the 19th
century. lovelace holds the honor
of having published the very
first algorithm intended to be
used by a machine to perform
calculations, which make lovelace
the first-ever computer
programmer.
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Second-Layer Convolution
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Second-Layer Convolution

Stacked First-Layer Feature Maps
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Second-Layer Convolution

We use multiple filters to extract different features.

Stacked First-Layer Feature Maps
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Second-Layer Convolution

We use multiple filters to extract different features.

Stacked First-Layer Feature Maps

ada lovelace was a mathematician
and writer who lived in the 19th
century. lovelace holds the honor
of having published the very
first algorithm intended to be
used by a machine to perform
calculations, which make lovelace
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Third-Layer Convolution

First-Layer Filters: E@EE

ada lovelace was a mathematician ada lovelace
and writer who lived in the 19th
century. lovelace holds the honor
of having published the very
first algorithm intended to be
used by a machine to perform
calculations, which make lovelace

the first-ever computer
programmer . ada lovelace

Filter Third-Layer Feature Map
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o

CNNs deal with greater complexity by having more layers.

l

Deep Learning
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Input Feature Maps

Raw Image(s) Low-level Mid-level High-level

e Edges e Ears e Facial
e Spots o Eyes Structure
e Nose

Filters 16




Convolutional Neural Networks (CNNs)

17




Convolutional Neural Networks (CNNs)

Filters

17




Convolutional Neural Networks (CNNs)

Feature Maps

Filters

17




Convolutional Neural Networks (CNNs)

Feature Maps

Filters

17




Convolutional Neural Networks (CNNs)

Feature Maps

—  Low-level

Filters

17




Convolutional Neural Networks (CNNs)

Feature Maps

—  Low-level —

Filters

17




Convolutional Neural Networks (CNNs)

Feature Maps

—  Low-level —  Mid-level

Filters

17




Convolutional Neural Networks (CNNs)

Feature Maps

—  Low-level — Mid-level —

Filters

17




Convolutional Neural Networks (CNNs)

Feature Maps

— Low-level — Mid-level —  High-level

Filters

17




Convolutional Neural Networks (CNNs)

Feature Maps

— Low-level — Mid-level —  High-level —

Filters

17




Convolutional Neural Networks (CNNs)
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Input Feature Maps
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Convolutional Neural Networks (CNNs)

Dave Smith. 2018. Cutting-Edge Face Recognition is Complicated. These Spreadsheets Make it Easier. Medium, Towards Data Science.
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Convolutional Neural Networks (CNNs)

e Works well on data with spatial relationship

o Tra nS| atIO N | Nnva ri ant Elon chilling on Mars Elon chilling on Tesla on Mars  |Elon chilling next to Spacex on Mars

e Scale invariant

Invariance = Elon is still Elon regardless of where he's located in the image

Dave Smith. 2018. Cutting-Edge Face Recognition is Complicated. These Spreadsheets Make it Easier. Medium, Towards Data Science.
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CNNs in Technology

eee00 Carrier &

Image may contain: two people, smiling,
sunglasses, sky, outdoor, water

Wu et al., 2017, February. Automatic alt-text: Computer-generated image descriptions for blind users on a social network service. 2017 ACM Conference.
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e Automatic image recognition and captioning =

We finally made it :)
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CNNs in Technology

Carrier & £ 77% )

=

e Automatic image recognition and captioning =

e Used for visually impaired people We finally made i

l‘))) Image may contain: two people, smiling,
sunglasses, sky, outdoor, water

Wu et al., 2017, February. Automatic alt-text: Computer-generated image descriptions for blind users on a social network service. 2017 ACM Conference.
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Rajpurkar et al., 2017. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning.
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CNNs in Life Sciences

Medical Diagnosis

o CheXNet:
- 21-layer CNN
- Input: chest X-ray image

- Outputs: probability of a pathology

Rajpurkar et al., 2017. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning.
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Summary

e Visual recognition
e Convolutions

Filters
Feature Maps

Architectures
Strides

Layers

o O O O O

e Handling complexity
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