

Hidden Markov Models

Eklavya SARKAR

Biometrics Security and Privacy, Idiap

Table of Contents

- Introduction
- Discrete Markov Models
- Hidden Markov Models
- 3 problems
 - Likelihood Problem
 - Training Problem
 - Decoding Problem
- Summary

Introduction

- Sequence processing:
 - Input: sequence X
 - Goal: estimate a sequence of outputs M
 - P(M|X)

- Introduced and studied in 1960-70s
- Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech recognition.

L. R. Rabiner

Discrete Markov Models (DMMs)

- Model M_k
- Composed of states $Q = \{q_1, ..., q_k, ..., q_K\}$
- q_j^t denotes state q_j at time t
- First-order Markov Models
- Time independent

Hidden Markov Models (HMMs)

HMMs

- Sequence of observations: $X = \{x_1, \dots, x_t, \dots, x_T\}$
- Sequence of states: $Q = \{q_1, \dots, q_k, \dots, q_K\}$, q_j^t is state a q_j at time t
- Transition probabilities: $A = \{a_{ij}\} : a_{ij} = P(q_j|q_i), \qquad 1 \le i, j \le K$
- Emission probabilities: $B = \{b_i(x)\} : b_i(x) = p(x|q_i), \qquad 1 \le i \le K$
- Initial state distribution: $\pi = \{\pi_i\} : \pi_i = P(I|q_j), \qquad 1 \leq j \leq K$

$$\Theta = \{\pi, A, B\}$$

- Observations now also described by emission probabilities, characterized by different stochastic distributions for each state q_i , $i \in [1,...,K]$.
 - Discrete, Gaussians, GMMs, ANNs (MLPs, or RNNs).

HMMs Topologies

Left-to-right model:

Speech recognition

Ergodic model:

Speaker identification

HMM-based Pattern Classification

Bayes Theorem

$$P(M|X,\Theta) = \frac{p(X|M,\Theta) P(M|\Theta)}{p(X|\Theta)}$$

- M: Sequential (sentence) model
- Θ: Model Parameters
- $P(X, M | \Theta)$: HMM (acoustic model)
- $P(X | \Theta)$: Assumed constant
- $P(M|\Theta)$: Prior knowledge (language model). $P(M|\Theta) \Rightarrow P(M|\Theta^*)$

Three HMM Problems

- 1. Definition and estimation of transition a_{ii} and emission $b_i(x)$ probabilities:
 - Computing likelihood $P(X|M,\Theta)$ for a given M_k and fixed Θ
- 2. Training a HMM:
 - Estimating Θ such that: $\underset{j=1}{\operatorname{argmax}} \prod_{j=1} P(X_j|M_j,\Theta)$
- 3. Classification (decoding) of an observed sequence X:
 - $X \in M_j$ if $M_j = \operatorname{argmax}_{M_k} P(X|M_k, \Theta) P(M_k)$

Likelihood Problem

Likelihood Estimation Problem

$$P(M|X,\Theta) = \frac{p(X|M,\Theta) P(M|\Theta)}{p(X|\Theta)}$$

- Computing $P(X | M, \Theta)$
- Fixed Θ
- Likelihood of a sequence of observations w.r.t. a HMM:
- Complexity: $\mathcal{O}(TK^T)$
 - Infeasible!

$$\begin{split} P(X|M) &= \sum_{Q \in M} P(X,Q|M) \\ &= \sum_{Q \in M} P(X|Q,M) P(Q|M) \\ &= \sum_{Q \in M} \prod_{t=1}^{T} p(x_t|q^t) \prod p_{q^{t-1},q^t} \\ &= \sum_{Q \in M} \prod_{t=1}^{T} p(x_t|q^t) p_{q^{t-1},q^t} \end{split}$$

Forward Recurrence

We define the following variable:

•
$$\alpha_t(i) = p(x_1, ..., x_t, q^t = q_i | \Theta)$$

i.e. the probability of having observed the partial sequence $\{x_1, ..., x_t\}$ and being at state i at time t, given the parameters Θ .

- Complexity: $\mathcal{O}(TK^2)$
 - Bounded!

1. Initialization:

•
$$\alpha_1(i) = \pi_i b_i(x_1), \quad 1 \le i \le K$$

2. Recursion:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{K} \alpha_t(i) \, a_{ij}\right] b_j(x_{t+1})$$

3. Termination:

$$P(X | \Theta) = \sum_{i=1}^{K} \alpha_{T}(i)$$

Forward Recurrence - Log Space

1. Initialization:

•
$$\alpha_1(i) = \pi_i b_i(x_1), \quad 1 \le i \le K$$

2. Recursion:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{K} \alpha_{t}(i) \, a_{ij}\right] b_{j}(x_{t+1})$$

3. Termination:

$$P(X \mid M) = \sum_{i=1}^{K} \alpha_{T}(i)$$

1. Initialization:

$$\alpha_1^{(\log)}(i) = \log \pi_i + \log b_i(x_1)$$

2. Recursion:

$$\qquad \alpha_{t+1}^{(\log)}(j) = [\operatorname{logsum}_{i=1}^{K}(\alpha_{t}^{(\log)}(i) + \log a_{ij})] + \log b_{j}(x_{t+1})$$

3. Termination:

$$log P(X|M) = [logsum_{i=1}^{K} \alpha_T^{(log)}(i)]$$

Training Problem

HMM Training Problem

- We want to accurately estimate parameters from the 'visible' sequence of observations.
- 'Training' an HMM means finding these parameters Θ .
- We use the Forward-Backward algorithm, with the following variables:
 - Forward variable $\alpha_t(i)$
 - Backward variable $\beta_t(i)$
 - Sequence of events $\xi_t(i,j)$
 - Gamma variable $\gamma_t(i)$

Backward Algorithm

We define the following variable:

•
$$\beta_t(i) = p(x_1, ..., x_t | q^t = q_i, \Theta)$$

i.e. the probability of having observed the partial sequence $\{x_1, ..., x_t\}$, given the state i at time t and the parameters Θ .

• Complexity: $\mathcal{O}(TK^2)$

1. Initialization:

$$\beta_T(i) = 1$$

2. Recursion:

$$\beta_t(j) = \left[\sum_{i=1}^K \beta_{t+1}(i) \, a_{ij}\right] \, b_j \, (x_{t+1})$$

3. Termination:

$$\beta_0 = P(X | \Theta) = \sum_{i=1}^K \pi_i b_i(x_1) \beta_1(i)$$

Sequence of Events

Forward Backward

We define the following variable:

•
$$\xi_t(i,j) = P(q^t = q_i, q^{t+1} = q_i | X, \Theta)$$

i.e. the probability of being in state i at time t and in state j at time t+1, given the observations and parameters Θ .

Can be expressed in terms of both forward and backward variables as:

$$\xi_t(i,j) = \frac{P(q_i^t, q_j^{t+1}, X | \Theta)}{P(X | \Theta)}$$

$$= \frac{a_t(i) a_{ij} b_j(x_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^K \sum_{j=1}^K \alpha_t(i) a_{ij} b_j(x_{t+1}) \beta_{t+1}(j)}$$

Gamma Variable

Forward Backward

We define the following variable:

•
$$\gamma_t(i) = P(q^t = q_i | X, \Theta)$$

i.e. the probability of being in state i at time t, given the observations and parameters Θ .

Can be expressed in terms of both forward and backward variables as:

$$\gamma_t(i) = \frac{P(q_i^t, X | \Theta)}{P(X | \Theta)} = \frac{\alpha_t(i) \beta_t(i)}{P(X | \Theta)}$$

Estimator Formulas

We define the following formulas, as estimators for the:

Transition probabilities:
$$\overline{a_{ij}} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$
 ---- Expected number of transitions from state q_i to q_j

Emission probabilities:
$$\overline{b_j(v_k)} = \frac{\sum_{t=1}^T \chi_t(i)}{\sum_{t=1}^T \gamma_t(i)} - \cdots - \sum_{t=1}^T \chi_t(i)$$
 Expected number of times in state q_j and observing v_k

Baum-Welch Algorithm

- New values $\overline{a_{ij}}$ and $\overline{b_j(v_k)}$
 - Re-compute α_t , β_t , γ_t , ξ_t
 - New values $\overline{a_{ij}}$ and $\overline{b_j(v_k)}$

>

- Iterate through this forward-backward (Baum-Welch) EM algorithm.
 - Until convergence.

Decoding Problem

Decoding Problem

• Estimating an optimal sequence of states given a sequence of observations and the parameters of a model.

Viterbi algorithm

We define 2 variables:

- 1. $\delta_t(i)$: highest likelihood along a side path among all paths ending in state q_i at time t:
 - $\delta_t(i) = \max P[q^1, ..., q_i^t, x^1, ..., x^t | \Theta]$
 - Similar to the forward algorithm's $\alpha_t(i) = p(x_1, ..., x_t, q^t = q_i | \Theta)$
- 2. $\psi_t(i)$: variable to keep track of 'best path' ending in state q_i at time t:
 - $\psi_t(i) = \operatorname{argmax} \ p(q^1, ..., q_i^t, x^1, ..., x^t | \Theta)$

1. Initialization:

- $\delta_1(i) = \pi_i b_i(x_1)$
- $\psi_1(i) = 0$

2. Recursion:

- $\delta_t(j) = \max_{1 \le i \le K} \left[\delta_{t-1}(i) \, a_{ij} \right] b_j(x_t)$
- $\psi_t(j) = \operatorname{argmax}_{1 \le i \le K} [\delta_{t-1}(i) a_{ij}]$

3. Termination:

- $P^*(X|\Theta) = \max_{1 \le i \le K} \delta_T(i)$

4. Backtracking:

1. Initialization:

- $\delta_1(i) = \pi_i b_i(x_1)$
- $\psi_1(i) = 0$

2. Recursion:

- $\delta_t(j) = \max_{1 \le i \le K} \left[\delta_{t-1}(i) \, a_{ij} \right] b_j(x_t)$
- $\psi_t(j) = \operatorname{argmax}_{1 \le i \le K} [\delta_{t-1}(i) a_{ij}]$

3. Termination:

- $P^*(X|\Theta) = \max_{1 \le i \le K} \delta_T(i)$

4. Backtracking:

Viterbi Algorithm - Log Space

1. Initialization:

- $\delta_1^{(\log)}(i) = \log \pi_i + \log b_i(x_1)$
- $\psi_1(i) = 0$

3. Termination:

- $\log P^*(X|\Theta) = \max_{1 \le i \le K} \delta_T^{(\log)}(i)$
- $q_T^* = \operatorname{argmax}_{1 < i < K} [\delta_T^{(\log)}(i)]$

2. Recursion:

- $\delta_t^{(\log)}(i) = \max_{1 \le i \le K} [\delta_{t-1}^{(\log)}(i) + \log a_{ij}] + \log b_j(x_t)$
- $\psi_t(j) = \operatorname{argmax}_{1 \le i \le K} [\delta_{t-1}^{(\log)}(i) + \log a_{ij}]$

4. Backtracking:

In summary, given a:

- Sequence of observations $X = \{x_1, ..., x_n, ...x_T\}$
- Parameters Θ

The Viterbi algorithm returns the:

- Optimal path $Q^* = \{q_1^*, ..., q_T^*\}$
- Likelihood along the best path $P^*(X | \Theta)$

Solved

Summary

Pros:

- Flexible topology.
- Rich mathematical framework.
- Wide range of applications.
- Powerful learning and decoding methods.
- Good abstraction for sequences, temporal aspects.

Cons:

- A priori selection of model topology and statistical distributions.
- First order Markov model for state transition.
- Lack of contextual information as correlation between successive acoustic vectors is ignored.
- Assumption of independence for computational efficiency.

Thank you!

Room 207-2, Idiap Research Institute

www.idiap.ch/~esarkar/

+41 78 82 50 754

eklavya.sarkar@idiap.ch

