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Introduction

« Sequence processing:

»  Input: sequence X

»  Goal: estimate a sequence of outputs M L. R. Rabiner
»  PM|X)

+ Tool: Hidden Markov Models (HMMs)
» Introduced and studied in 1960-70s
»  Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected

applications in speech recognition.




Discrete Markov Models (DMMs)

«  Model M,
« Composed of states Q = {g,--» Gy -- -5 G}

. q; denotes state g; at time 1

e First-order Markov Models

« Time independent




Hidden Markov Models (HMMs)
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HMMs

« Sequence of observations: X =Az1,..., 2, 20}

. Sequence of states: Q={aq1,---ar:---.ax}, q; is state a g; at time ¢

« Transition probabilities: A ={ai;} ai; = P(gjlgi), 1<i,j<K

«  Emission probabilities: B={bj(x)}: bi(x) =plzlg;), 1<i<K

 Initial state distribution: m={m}:m=P|g), 1<j<K
®={rA,B}

« Observations now also described by emission probabilities, characterized by
different stochastic distributions for each state g, 1 € [1,..., K].
»  Discrete, Gaussians, GMMs, ANNs (MLPs, or RNNSs).




HMMs Topologies

Left-to-right model: Ergodic model:
“doll "
/d/ /o/ /\/

Speech recognition Speaker identification




HMM-based Pattern Classification

X|M,©) P(M|O)
p(X|©)

pM(x,0) = 2

M: Sequential (sentence) model

®: Model Parameters

P(X,M|®): HMM (acoustic model)
P(X|©®): Assumed constant
P(M|©): Prior knowledge (language model). P(M|©) = P(M|©*)




Three HMM Problems

1. Definition and estimation of transition a; and emission b,(x) probabilities:

»  Computing likelihood P(X| M, ®) for a given M, and fixed ©

2. lraining a HMM:

»  Estimating ® such that: argmaxg H P(X;|M,;,0O)
1=1

3. Classification (decoding) of an observed sequence X:
» X eM; it M;=argmax,; P(X|M,©)P(My;)




Likelihood Problem



| ikelihood Estimation Problem

X|M,©) P(M|O)
p(X|©)

p(M|x,0) = 2

Computing P(X | M, ®)
Fixed ® YT,

Likelihood of a sequence of !
t
— X t—1 ot
observations w.r.t. a HMM: Q;“l;[lp( t1q )Hpq 9
T
_ t
Complexity: O(TK") - Z P(7t|q") Pgr—1 gt
QcM t=1

» |Infeasible !
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Forward Recurrence

1. Initialization:

We define the following variable:

a(i) = px,....X,q" = q;|O) |
2. Recursion:
K
i.e. the probability of having observed the a4 () = [Z o (i) ] bj(xr+1)
partial sequence {xi,...,x,} and being at i=1

state i at time ¢, given the parameters ©.

Complexity: O(TK?) K
> Bounded ! . PX|0) = Z ar(i)
=1

3. Termination:

12




Forward Recurrence - Log Space

1. Initialization: 1. Initialization:
- o) =mb(x), 1<i<K - (i) = log 7; + log by(x))
2. Recursion: 2. Recursion:

a1°9(j) = [Iogsum - 1(05(10g)(z) +loga;)] + log bi(x,, )

> at+1(j) = | Z at(i) aij] bj(xtH) T %
=1

3. Termination: 3. Termination:

- log P(X| M) = [logsum__,at°?(i)]

K
 PXIM) =) ay(i)
=1
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Training Problem



HMM Training Problem

- We want to accurately estimate parameters from the ‘visible’ sequence of
observations.

 'Training’ an HMM means finding these parameters ©.

« We use the Forward-Backward algorithm, with the following variables:

~  Backward variable f,(i)

~  Sequence of events £(i, )

»~  Gamma variable (i)

15




Backward Algorithm

1. Initialization:

g ﬁT(i) =1

We define the following variable:

) = e, '=qg.,0
PO = PO %140 = 6 O) 2. Recursion:
K
i.e. the probability of having observed . ) = [ZﬁtJrl(i) a;l b; (x11)
the partial sequence {xi,...,x,}, given =1

the state i at time ¢ and the parameters

. .
. Complexity: O(TK?)  Bo=PX|0) = ) mbx) i)
=1

3. Termination:
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Sequence of Events

We define the following variable: Can be expressed in terms of both

forward and backward variables as:

) N = P t:.H_l:-X@
5] =P(q" = q,9" = q;| X, 0) P(q!, ¢, X| ©)

P(X|0O)

(1, ]) =
I.e. the probability of being in state i at

time ¢ and in state j at time 7+ 1, afi) dij J(xf+1)'ﬁf+1(])

3K 3K alay b )b ()

given the observations and parameters

O.
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Gamma Variable

We define the following variable: Can be expressed in terms of both

forward and backward variables as:

A=) PhX10) _ ()

PX|®)  P(X|®)

Vt(i) —
I.e. the probability of being in state i at

time ¢, given the observations and

parameters ©.

18




Estimator Formulas

We define the following formulas, as estimators for the:

 Initial state: T, = }/l(i) yCEEEE R EE PR EEE L Expected frequency in state g; at time r = 1

z 5( ) «- Expected number of transitions from state g, to g;
AL J

Transition probabilities: a;

° . ] n n
«---- Expected number of transitions from state ¢g.
zt—l }/t(l) P 4
T , Expected number of times in state q;
Zt=1&xt=vk yf(l) D and observing v,

Emission probabilities: b(v;) =
* T :
Zt=1 Vt(l) q=====-= Expected number of times in state q;
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Baum-Welch Algorithm

. E-Step:
. New values Cl_l] and b](vk) i _____ }_/t_(_i)a_@:(izj_.)______:
»  Re-compute a;, ﬁt, Vi ft I l
»  New values a;; and bj(Vk) - ------ M-Step ------- '
_ by

lterate through this forward-backward (Baum-Welch) EM algorithm.

. Until convergence.
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Decoding Problem



Decoding Problem

- Estimating an optimal sequence of states given a sequence of observations and the

parameters of a model.

»  Viterbi algorithm

22




Viterbi Algorithm

We define 2 variables:

1. 0(i): highest likelihood along a side path among all paths ending in state g; at time
[

- o(i) = max P[q, N x!, ... x"|9]

~  Similar to the forward algorithm’s a (i) = p(x;, ..., x,,q' = q;| ©)

2. y(i): variable to keep track of ‘best path’ ending in state g; at time f:
-y (i) = argmax p(q', N x!, ..., x'|©)

23




Viterbi Algorithm

1. Initialization: 3. Termination:
, 1<i<K
- () =0

~ g7 = argmax; ; . o7(0)]

2. Recursion:

. 0[J) = max [o,_,(1)a;] b(x "
t(]) ISiSK[ t 1() J] ]( t) g qt =Vjt+1(q

- y(J) = argmax, _; .16, (1) a;]

t+1*)
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Viterbi Algorithm

1. Initialization: 3. Termination:
, 1<i<K
- () =0

~ g7 = argmax; ; . o7(0)]

2. Recursion:

. 0[J) = max [o,_,(1)a;] b(x "
t(]) ISiSK[ t 1() J] ]( t) g qt =Vjt+1(q

- y(J) = argmax, _; .16, (1) a;]

t+1*)
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Viterbi Algorithm - Log Space

1. Initialization: 3. Termination:
- 5199() = log 7, + log b(x,) - log P(X|©) = max 5°%)()
. ) = () i .
y (2) - gqF = argmax, _, SK[égog)(l)]
2. Recursion: A
log)/\ __ log), - '
X 5t( (i) = 11212{ [5}_ lg)(z) +loga;] +logb(x) qt* . (qt_|_1>l<)

- () = argmax, SK[ét(iolg)(i) + log a;]
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Viterbi Algorithm

In summary, given a:
 Sequence of observations X = {x,...,x,, ...X7}

« Parameters ®

The Viterbi algorithm returns the:

- Optimal path O* = {q]', ....q7}
 Likelihood along the best path P*(X|®)
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Summary

Pros: Cons:
> Flexible topology. - A priori selection of model topology and
» Rich mathematical framework. statistical distributions.

. Wide range of applications - First order Markov model for state transition.

. Powerful learning and decoding - Lack of contextual information as correlation

between successive acoustic vectors is
methods.

ignored.
» Good abstraction for sequences, 5 | |
- Assumption of independence for
temporal aspects. | o
computational efficiency.
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Thank you !
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